[1]姜 斌,叶 军.基于群稀疏正则化的高光谱图像去噪[J].计算机技术与发展,2023,33(12):171-177.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 024]
 JIANG Bin,YE Jun.Hyperspectral Image Denoising Based on Group Sparse Regularization[J].,2023,33(12):171-177.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 024]
点击复制

基于群稀疏正则化的高光谱图像去噪()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年12期
页码:
171-177
栏目:
人工智能
出版日期:
2023-12-10

文章信息/Info

Title:
Hyperspectral Image Denoising Based on Group Sparse Regularization
文章编号:
1673-629X(2023)12-0171-07
作者:
姜 斌叶 军
南京邮电大学 理学院,江苏 南京 210023
Author(s):
JIANG BinYE Jun
School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
高光谱图像图像去噪群稀疏正则化低秩约束条纹噪声
Keywords:
hyperspectral imagesimages denoisinggroup sparse regularizationlow-rank constraintstripe noise
分类号:
TP751
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 12. 024
摘要:
高光谱图像( HSI) 具有良好的光谱识别能力,但在采集过程中易受到混合噪声的污染,严重影响了后续任务的精度,因此 HSI 去噪是重要的预处理过程。 针对现有去噪方法对空间-光谱先验
信息利用不足、条纹噪声建模不合理的问题,提出一种新的基于群稀疏正则化的高光谱图像去噪算法。 该算法将干净 HSI 的空间-光谱低秩特性和各波段上条纹噪声的低秩结构融入一个新
框架,实现了干净 HSI 与高强度结构化条纹噪声的分离;同时为了有效保持图像的边缘信息,在去噪模型中引入新的群稀疏正则化,即基于 L2,1 范数的增强型三维全变分正则化(enhanced 3D total variation,E3DTV) ,充分挖掘 HSI 差分图像的稀疏先验信息,进一步提升了图像的分段平滑性。 采用交替方向乘子法对变量优化求解,在仿真和真实数据集上进行数值实验表明,所提模型具有更好的去噪和去条纹性能,在视觉效果和定量评价结果上都明显优于其他对比算法。
Abstract:
Hyperspectral image ( HSI) has good spectral recognition ability,but it is easily polluted by mixed noise during the acquisitionprocess,which seriously affects the accuracy of subsequent tasks,so HSI denoising is an important preprocessing process. Aiming at theproblems of insufficient utilization of spatial-spectral prior information and unreasonable modeling of stripe noise in existing denoisingmethods,a new hyperspectral image denoising algorithm based on group sparse regularization is proposed. The algorithm integrates thespatial-spectral low-rank characteristics of clean HSI and the low-rank structure of stripe noise in each band into a new framework,andrealizes the separation of clean HSI and high-intensity structured stripe noise; at the same time,in order to effectively maintain the edgeinformation of the image,a new group sparse regularization is introduced into the denoising model,that is,enhanced 3D total variation( E3DTV) based on the L2,1 norm,which can fully explore the sparse prior information of HSI difference images. Alternate direction multiplier method is used to optimize the solution of variables. Numerical experiments on simulation and real data sets show that the proposedmodel has better performance in denoising and destriping,and its visual effect and quantitative evaluation results are significantly betterthan that of other comparison algorithms.

相似文献/References:

[1]宋世刚 粘永健 李纲.面向目标检测的高光谱图像压缩技术[J].计算机技术与发展,2009,(11):1.
 SONG Shi-gang,NIAN Yong-jian,LI Gang.Hyperspectral Image Compression Employing Target Detection[J].,2009,(12):1.
[2]黄伟 王书文.一种基于图像边缘检测的全变分的去噪方法[J].计算机技术与发展,2009,(02):24.
 HUANG Wei,WANG Shu-wen.Total Variation Image Denoising Based on Image Edge Detection[J].,2009,(12):24.
[3]周先国 李开宇.基于提升小波结合DCT变换的图像去噪研究[J].计算机技术与发展,2009,(02):62.
 ZHOU Xian-guo,LI Kai-yu.Image De - noising Research Based on Lifting Wavelet and Discrete Cosine Transform[J].,2009,(12):62.
[4]邢丹俊 王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,(02):42.
 XING Dan-jun,WPNG Ji-cheng.Adaptive Threshold Based on Lifting Wavelet Transform for Image Denoising[J].,2008,(12):42.
[5]于梅 殷兵 梁栋 王璐.基于边缘检测的Contourlet变换图像去噪[J].计算机技术与发展,2008,(06):104.
 YU Mei,YIN Bing,LIANG Dong,et al.Image Denoising with Contourlet Transform Based on Edge Detection[J].,2008,(12):104.
[6]林德贵 何建农 郑玉燕.基于分水岭的提升小波图像去噪[J].计算机技术与发展,2008,(08):29.
 LIN De-gui,HE Jian-nong,ZHENG Yu-yan.Lifting Wavelet Image De- Noising Based on Watershed[J].,2008,(12):29.
[7]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(12):98.
[8]李瑶 董瑞 何韬 梁栋.一种基于Contourlet变换的图像去噪方法[J].计算机技术与发展,2007,(03):81.
 LI Yao,DONG Rui,HE Tao,et al.A Method for Image Denoising Based on Contourlet Transform[J].,2007,(12):81.
[9]王国权 刘亮.FoE模型的训练方法研究[J].计算机技术与发展,2010,(12):86.
 WANG Guo-quan,LIU Liang.A Study on Training Methods of FoE Model[J].,2010,(12):86.
[10]方洁.基于非抽样Contourlet变换的最佳软阈值图像去噪[J].计算机技术与发展,2011,(02):102.
 FANG Jie.Image Denoising Based on Nonsubsampled Contourlet Transform and Best Soft Threshold[J].,2011,(12):102.
[11]徐 辉,杨 敏.基于低秩矩阵恢复的高光谱图像去噪[J].计算机技术与发展,2022,32(10):46.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 008]
 XU Hui,YANG Min.Hyperspectral Image Denoising Based on Low Rank Matrix Restoration[J].,2022,32(12):46.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 008]

更新日期/Last Update: 2023-12-10