[1]代永强,王联国.PSO和SFLA混合优化算法[J].计算机技术与发展,2014,24(04):77-79.
 DAI Yong-qiang,WANG Lian-guo.Hybrid Optimization Algorithm of PSO and SFLA[J].,2014,24(04):77-79.
点击复制

PSO和SFLA混合优化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年04期
页码:
77-79
栏目:
智能、算法、系统工程
出版日期:
2014-04-30

文章信息/Info

Title:
Hybrid Optimization Algorithm of PSO and SFLA
文章编号:
1673-629X(2014)04-0077-03
作者:
代永强王联国
甘肃农业大学 信息科学技术学院
Author(s):
DAI Yong-qiangWANG Lian-guo
关键词:
粒子群优化算法混合蛙跳算法混合算法优化性能
Keywords:
Particle Swarm Optimization ( PSO) algorithmShuffled Frog Leaping Algorithm ( SFLA)hybrid algorithmoptimization performance
分类号:
TP18
文献标志码:
A
摘要:
各种智能优化算法由于进化原理不同,优化性能各异,将不同种类的智能优化算法混合起来,往往能够取长补短,互相促进,提高混合算法的优化性能。利用粒子群优化(PSO)算法的快速收敛特性和混合蛙跳算法(SFLA)突出的全局协同搜索能力,提出了一种PSO-SFLA混合优化算法。该混合算法在执行过程中将种群分为2个子群体,一个子群体采用PSO算法进化寻优,另一个子群体采用改进的SFLA进化寻优,2个子群体共享整个种群极值信息。通过对3个标准函数进行实验并与基本PSO算法进行比较,实验结果表明混合算法获得了更好的解,具有更好的优化性能。
Abstract:
All kinds of intelligent optimization algorithm show different optimized performance because of different evolution principle. To mix different kinds of intelligent optimized algorithm can complement and promote each othera,and improve the optimization perform-ance of hybrid algorithm. A hybrid algorithm combined Particle Swarm Optimization ( PSO) and Shuffled Frog Leaping Algorithm ( SF-LA) is proposed by using the rapid convergence properties of PSO algorithm and the outstanding global cooperative search ability of SF-LA. The algorithm divides the swarm into two sub-groups. In each iteration,one sub-group evolves using PSO algorithm,the other sub-group evolves using SFLA,and two algorithms share the information of groups extremum. The algorithm is experimented for three stand-ard functions and compared with basic PSO algorithm,results show that PSO-SFLA hybrid algorithm outperforms PSO algorithm.

相似文献/References:

[1]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(04):9.
[2]张雯雰 李丽娟 滕少华[] 罗玉玲.粒子群优化算法在桁架结构优化中的应用[J].计算机技术与发展,2010,(05):223.
 ZHANG Wen-fen,LI Li-juan,TENG Shao-hua,et al.Improved Particle Swarm Optimizer Algorithm for Design Optimization of Structures[J].,2010,(04):223.
[3]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(04):25.
[4]张艳丽 保文星.粒子群优化算法在图像边缘检测中的研究应用[J].计算机技术与发展,2009,(05):26.
 ZHANG Yan-li,BAO Wen-xing.Research and Application of Image Edge Detection Based on PSO Algorithm[J].,2009,(04):26.
[5]聂笃宪.基于PSO自适应正则化参数图像恢复的研究[J].计算机技术与发展,2009,(01):106.
 NIE Du-xian.Research on Adaptively Regularized Parameter Image Restoration PSO- Based[J].,2009,(04):106.
[6]谭伟 李向.微粒群优化算法的研究[J].计算机技术与发展,2009,(03):87.
 TAN Wei,LI Xiang.Research Status and Development of Particle Swarm Optimization[J].,2009,(04):87.
[7]曾万里 危韧勇 陈红玲.基于改进PSO算法的BP神经网络的应用研究[J].计算机技术与发展,2008,(04):49.
 ZENG Wan-li,WEI Ren-yong,CHEN Hong-ling.Research and Application of BP Neural Network Based on Improved PSO Algorithm[J].,2008,(04):49.
[8]朱玉平.一种改进粒子群优化算法[J].计算机技术与发展,2008,(11):106.
 ZHU Yu-ping.An Algorithm of Modified Particle Swarm Optimization[J].,2008,(04):106.
[9]林杰 孙淑霞 文武.基于粒子群优化算法的图像小波阈值去噪研究[J].计算机技术与发展,2007,(04):204.
 LIN Jie,SUN Shu-xia,WEN Wu.An Image Denoising Method Based on Wavelet Transform and Particle Swarm Optimization[J].,2007,(04):204.
[10]肖裕权 周肆清.基于粒子群优化算法的数据流聚类算法[J].计算机技术与发展,2011,(10):43.
 XIAO Yu-quan,ZHOU Si-qing.Clustering Evolving Data Streams Based on Particle Swarm Optimization[J].,2011,(04):43.

更新日期/Last Update: 1900-01-01