[1]赵鹏 耿焕同 蔡庆生 王清毅.一种基于加权复杂网络特征的K—means聚类算法[J].计算机技术与发展,2007,(09):35-37.
 ZHAO Peng,GENG Huan-tong,CAI Qing-sheng,et al.A Novel K- means Clustering Algorithm Based on Weighted Complex Networks Feature[J].,2007,(09):35-37.
点击复制

一种基于加权复杂网络特征的K—means聚类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年09期
页码:
35-37
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Novel K- means Clustering Algorithm Based on Weighted Complex Networks Feature
文章编号:
1673-629X(2007)09-0035-03
作者:
赵鹏12 耿焕同2 蔡庆生2 王清毅2
[1]安徽大学计算智能与信号处理教育部重点实验室[2]中国科学技术大学计算机系
Author(s):
ZHAO Peng GENG Huan-tong CAI Qing-sheng WANG Qing-yi
[1]Ministry of Education Key Lab. of Intelligent Computing & Signal Processing,Anhui Univ[2]Dept. of Computer Sci. and Tech. , University of Science and Technology of China
关键词:
聚类复杂网络聚集度聚集系数
Keywords:
clusteringcomplex networks clustering degree clustering coefficient
分类号:
TP18
文献标志码:
A
摘要:
在分析了传统的基于划分的K—means聚类算法的优越性和存在不足的基础上,根据近两年复杂网络研究中部分新的理论成果,提出了复杂网络加权度、加权聚集度与加权聚集系数的定义,并将数据聚类转换为复杂网络上的节点聚类,提出基于加权复杂网络特征的K—means聚类算法(简称WCNFC算法)。实验结果表明,该算法根据节点加权复杂网络特征值,能够较好地找到聚类中心,有效地避免了对初始化选值敏感性的问题,从而使得聚类质量大大提高
Abstract:
After analyzing the advantages and disadvantages of the traditional partitioned K - means clustering algorithm and based on the new theory results achieved in the field of complex networks, the definitions of weighted degree, weighted clustering degree, and weighted clustering coefficient of complex networks and a novel K - means clustering algorithm based on the weighted complex networks feature were proposed. The clustering of datum was transformed into clustering of nodes in complex networks. The experimental results show that this algorithm can find clustering centers better based on the weighted complex networks feature of nodes and it is robust to initialization, so the quality of clustering is improved greatly

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(09):36.
[2]张甜 罗眉 孟晓红 赵宗涛.一种基于状态特征的航天发射故障诊断技术[J].计算机技术与发展,2010,(01):93.
 ZHANG Tian,LUO Mei,MENG Xiao-hong,et al.A Technology in Fault Diagnosis of Spaceflight Launch Based on State Character[J].,2010,(09):93.
[3]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(09):84.
[4]李方洁 刘希玉.复杂网络维的测量[J].计算机技术与发展,2010,(04):61.
 LI Fang-jie,LIU Xi-yu.Measuring Dimensions for Complex Networks[J].,2010,(09):61.
[5]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(09):179.
[6]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(09):109.
[7]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(09):171.
[8]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
 YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(09):111.
[9]刘淑英 程国建 彭方.人工神经生长细胞结构网络在医疗诊断的应用[J].计算机技术与发展,2009,(05):231.
 LIU Shu-ying,CHENG Guo-jian,PENG Fang.Applications of Growing Cell Structures of Artificial Neural Network for Medical Diagnosis[J].,2009,(09):231.
[10]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(09):58.
[11]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(09):4.

备注/Memo

备注/Memo:
国家自然科学基金项目(70171052);安徽省高校青年教师基金项目(2006jq1040)赵鹏(1976-),女,安徽安庆人,博士研究生,讲师,研究方向为人工智能;蔡庆生,教授,博士生导师,研究方向为人工智能、机器学习、复杂系统
更新日期/Last Update: 1900-01-01