[1]杨晶晶,吴 辉,陈颖频*.基于 Lp 收缩算子的改进广义全变分去噪方法[J].计算机技术与发展,2020,30(04):20-25.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 004]
 YANG Jing-jing,WU Hui,CHEN Ying-pin*.Improved Generalized Total Variation Denoising Method Based on Lp Shrinkage[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(04):20-25.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 004]
点击复制

基于 Lp 收缩算子的改进广义全变分去噪方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年04期
页码:
20-25
栏目:
智能、算法、系统工程
出版日期:
2020-04-10

文章信息/Info

Title:
Improved Generalized Total Variation Denoising Method Based on Lp Shrinkage
文章编号:
1673-629X(2020)04-0020-06
作者:
杨晶晶1 吴 辉2 陈颖频2*
1. 福州大学 物理与信息工程学院,福建 福州 350000; 2. 闽南师范大学 物理与信息工程学院,福建 漳州 363000
Author(s):
YANG Jing-jing1 WU Hui2 CHEN Ying-pin2*
1. School of Physics and Information Engineering,Fuzhou University,Fuzhou 350000,China; 2. School of Physics and Information Engineering,Minnan Normal University,Zhangzhou 363000,China
关键词:
二阶广义全变分模型图像去噪Lp 收缩算子交替乘子迭代法稀疏性
Keywords:
second - order generalized total variational model image denoising Lp shrinkage alternating direction method of multiplierssparsity
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 04. 004
摘要:
二阶广义的全变分模型是一种建立在全变分模型的思想之上进行改进的图像去噪模型,该模型是一种考虑一阶以及高阶梯度稀疏性的模型,能够有效地抑制阶梯伪影效应的产生。Lp 收缩算子相比于 L1 算子增加了一个自由度,它能够更好地刻画稀疏梯度信息,同时 Lp 收缩算子的等高线对噪声更加鲁棒。 考虑到 Lp 收缩算子的优势,将 Lp 收缩算子引入二阶广义全变分去噪模型,提出改进的二阶广义全变分 Lp 收缩算子模型(TGV2-Lp) 。利用交替乘子迭代法对模型进行求解,引入快速傅里叶算法提高算法效率。 通过测试 6 组图片、对比传统的 3 种去噪模型,从实验结果可以得出,提出的模型 TGV2-Lp 在有效保留图片边缘细节信息的同时,能够有效去除噪声,在视觉效果、峰值信噪比和结构相似性都有一定优势。
Abstract:
Second-order total generalized variation model is an image denoising model based on the idea of the total variation (TV) model. Both the first-order and high-level sparseness are taken into account so that the generation of the stair-case artifact of TV is effectively suppressed. The Lp shrinkage adds a degree of freedom compared to the L1 operator,which better describes the sparse gradient information,while the contours of the Lp shrinkage are more robust to noise. Considering the advantages mentioned above,we introduce the Lp shrinkage in second - order total generalized variation model and propose second - order total generalized variation with Lp shrinkage (TGV2-Lp) model. The model is solved by the alternating multiplier iteration method. The fast Fourier transform algorithm is introduced to further improve the efficiency of the algorithm. By testing six sets of pictures and comparing the traditional three denoising models, it can be concluded from the experimental results that the proposed model can effectively remove noise while effectively retaining the edge details of the processed picture and has certain advantages in visual effects,peak signal-to-noise ratio,and structural similarity.

相似文献/References:

[1]黄伟 王书文.一种基于图像边缘检测的全变分的去噪方法[J].计算机技术与发展,2009,(02):24.
 HUANG Wei,WANG Shu-wen.Total Variation Image Denoising Based on Image Edge Detection[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):24.
[2]周先国 李开宇.基于提升小波结合DCT变换的图像去噪研究[J].计算机技术与发展,2009,(02):62.
 ZHOU Xian-guo,LI Kai-yu.Image De - noising Research Based on Lifting Wavelet and Discrete Cosine Transform[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):62.
[3]邢丹俊 王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,(02):42.
 XING Dan-jun,WPNG Ji-cheng.Adaptive Threshold Based on Lifting Wavelet Transform for Image Denoising[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(04):42.
[4]于梅 殷兵 梁栋 王璐.基于边缘检测的Contourlet变换图像去噪[J].计算机技术与发展,2008,(06):104.
 YU Mei,YIN Bing,LIANG Dong,et al.Image Denoising with Contourlet Transform Based on Edge Detection[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(04):104.
[5]林德贵 何建农 郑玉燕.基于分水岭的提升小波图像去噪[J].计算机技术与发展,2008,(08):29.
 LIN De-gui,HE Jian-nong,ZHENG Yu-yan.Lifting Wavelet Image De- Noising Based on Watershed[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(04):29.
[6]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(04):98.
[7]李瑶 董瑞 何韬 梁栋.一种基于Contourlet变换的图像去噪方法[J].计算机技术与发展,2007,(03):81.
 LI Yao,DONG Rui,HE Tao,et al.A Method for Image Denoising Based on Contourlet Transform[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2007,(04):81.
[8]王国权 刘亮.FoE模型的训练方法研究[J].计算机技术与发展,2010,(12):86.
 WANG Guo-quan,LIU Liang.A Study on Training Methods of FoE Model[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2010,(04):86.
[9]方洁.基于非抽样Contourlet变换的最佳软阈值图像去噪[J].计算机技术与发展,2011,(02):102.
 FANG Jie.Image Denoising Based on Nonsubsampled Contourlet Transform and Best Soft Threshold[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2011,(04):102.
[10]柯丹丹 蔡光程 曹倩倩.基于形态学算子的各向异性扩散去噪方法[J].计算机技术与发展,2012,(04):81.
 KE Dan-dan,CAI Guang-cheng,CAO Qian-qian.An Anisotropic Diffusion Denoising Method Based on Morphological Operator[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2012,(04):81.

更新日期/Last Update: 2020-04-10