[1]黄玲俐. 一种改进权重的非局部均值图像去噪方法[J].计算机技术与发展,2016,26(06):16-19.
 HUANG Ling-li. A Non-local Means Denoising Algorithm with Improved Weighted Function[J].,2016,26(06):16-19.
点击复制

 一种改进权重的非局部均值图像去噪方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年06期
页码:
16-19
栏目:
智能、算法、系统工程
出版日期:
2016-06-10

文章信息/Info

Title:
 A Non-local Means Denoising Algorithm with Improved Weighted Function
文章编号:
1673-629X(2016)06-0016-04
作者:
 黄玲俐
 电子科技大学 数学科学学院
Author(s):
 HUANG Ling-li
关键词:
 图像去噪非局部均值去噪加权核函数高斯噪声
Keywords:
 image denoisingnon-local means denoisingweighted kernel functionGaussian noise
分类号:
TP301
文献标志码:
A
摘要:
 非局部均值( Non-Local Means,NLM)去噪采用图像邻域间的自相似性构造权重,进而达到图像恢复的效果。文中对非局部均值去噪模型进行了介绍说明,尤其是对原始非局部均值去噪算法中的核函数—指数函数进行了描述,并且通过对几种新的加权核函数的分析说明,综合几种的优缺点,提出了一种新的加权核函数。然后又对双边滤波算法进行了研究说明,借鉴双边滤波的优点,再结合之前提出的新的加权核函数,进而得到了一种改进的权重函数,提出了一种新的权重计算公式,得到了一种改进的非局部均值去噪算法。通过对添加不同噪声水平的噪声图像进行实验,结果表明,与传统的非局部均值滤波算法相比,文中算法保护了恢复图像的边缘,突出了几何特征和纹理,去噪效果比原有算法有所提高,在去噪性能和结构信息上均有显著效果。
Abstract:
 The NLM denoising uses self-similarity of image between neighborhood to construct weight,thus to achieve the effect of image restoration. The non-local means denoising model is introduced in this paper,especially for the exponential function which is the kernel function in the original non-local means denoising algorithm. And through the analysis of several new weighted kernel function,integrat-ed the advantages and disadvantages of them,a new weighted kernel function is put forward. Then research on the bilateral filtering algo-rithm,reference of its advantages,and combined with new previous kernel function,an improved weighted function is obtained,proposing a new formula of weight,getting an improved non-local means denoising algorithm. The proposed method has been evaluated on testing images with various levels noise. Numerical results show that compared with the traditional non-local means algorithm, the improved method can protect the edges,highlight the geometry features and texture,make the denoising image become more clear and result in a better effect. The proposed method improves the denoising performance as well as the preservation of structure information.

相似文献/References:

[1]黄伟 王书文.一种基于图像边缘检测的全变分的去噪方法[J].计算机技术与发展,2009,(02):24.
 HUANG Wei,WANG Shu-wen.Total Variation Image Denoising Based on Image Edge Detection[J].,2009,(06):24.
[2]周先国 李开宇.基于提升小波结合DCT变换的图像去噪研究[J].计算机技术与发展,2009,(02):62.
 ZHOU Xian-guo,LI Kai-yu.Image De - noising Research Based on Lifting Wavelet and Discrete Cosine Transform[J].,2009,(06):62.
[3]邢丹俊 王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,(02):42.
 XING Dan-jun,WPNG Ji-cheng.Adaptive Threshold Based on Lifting Wavelet Transform for Image Denoising[J].,2008,(06):42.
[4]于梅 殷兵 梁栋 王璐.基于边缘检测的Contourlet变换图像去噪[J].计算机技术与发展,2008,(06):104.
 YU Mei,YIN Bing,LIANG Dong,et al.Image Denoising with Contourlet Transform Based on Edge Detection[J].,2008,(06):104.
[5]林德贵 何建农 郑玉燕.基于分水岭的提升小波图像去噪[J].计算机技术与发展,2008,(08):29.
 LIN De-gui,HE Jian-nong,ZHENG Yu-yan.Lifting Wavelet Image De- Noising Based on Watershed[J].,2008,(06):29.
[6]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(06):98.
[7]李瑶 董瑞 何韬 梁栋.一种基于Contourlet变换的图像去噪方法[J].计算机技术与发展,2007,(03):81.
 LI Yao,DONG Rui,HE Tao,et al.A Method for Image Denoising Based on Contourlet Transform[J].,2007,(06):81.
[8]王国权 刘亮.FoE模型的训练方法研究[J].计算机技术与发展,2010,(12):86.
 WANG Guo-quan,LIU Liang.A Study on Training Methods of FoE Model[J].,2010,(06):86.
[9]方洁.基于非抽样Contourlet变换的最佳软阈值图像去噪[J].计算机技术与发展,2011,(02):102.
 FANG Jie.Image Denoising Based on Nonsubsampled Contourlet Transform and Best Soft Threshold[J].,2011,(06):102.
[10]柯丹丹 蔡光程 曹倩倩.基于形态学算子的各向异性扩散去噪方法[J].计算机技术与发展,2012,(04):81.
 KE Dan-dan,CAI Guang-cheng,CAO Qian-qian.An Anisotropic Diffusion Denoising Method Based on Morphological Operator[J].,2012,(06):81.
[11]李智,张根耀,王蓓. 基于一种新的阈值函数的小波图像去噪[J].计算机技术与发展,2014,24(11):100.
 LI Zh,ZHANG Gen-yao,WANG Bei. Wavelet Image Denoising Based on a New Threshold Function[J].,2014,24(06):100.
[12]张哲,张化朋. 一种基于偏微分方程变分去噪模型[J].计算机技术与发展,2014,24(11):103.
 ZHANG Zhe,ZHANG Hua-peng. An Denoising Model of Variation Based on PDE[J].,2014,24(06):103.
[13]王璐. 基于四阶微分全变差的图像去噪模型[J].计算机技术与发展,2016,26(03):85.
 WANG Lu. Image De-noising Model Based on Total Variation of Fourth-order Differential[J].,2016,26(06):85.
[14]李晓飞,邱晓晖. 基于小波变换的改进软阈值图像去噪算法[J].计算机技术与发展,2016,26(05):76.
 LI Xiao-fei,QIU Xiao-hui. An Improved Soft-threshold Image Denoising Algorithm Based on Wavelet Transform[J].,2016,26(06):76.
[15]张化朋,任少美. 基于偏微分方程的乘性噪声去噪算法[J].计算机技术与发展,2016,26(11):90.
 ZHANG Hua-peng,REN Shao-mei. Algorithm of Removing Multiplicative Noise Based on Partial Differential Equation[J].,2016,26(06):90.
[16]张小燕,吐尔洪江·阿布都克力木. 小波变换的阈值图像去噪算法改进[J].计算机技术与发展,2017,27(03):81.
 ZHANG Xiao-yan,Turghunjan ABDUKIRIM TURKI. Improvement of Threshold Image Denoising Algorithm with Wavelet Transform[J].,2017,27(06):81.
[17]陈少利,杨敏. 改进变步长快速迭代收缩阈值算法[J].计算机技术与发展,2017,27(10):69.
 CHEN Shao-li,YANG Min. An Improved Fast Iterative Shrinkage-thresholding Algorithm with Variable Stepsize[J].,2017,27(06):69.
[18]雷飞,朱林,王雪丽. 改进小波软硬折衷法在水下图像去噪中的应用[J].计算机技术与发展,2017,27(11):150.
 LEI Fei,ZHU Lin,WANG Xue-li. Application of Improved Compromise Soft-hard Threshold Algorithm in Underwater Image Denoising[J].,2017,27(06):150.

更新日期/Last Update: 2016-09-19