[1]李振,贾瑞玉. 一种改进的K-means蚁群聚类算法[J].计算机技术与发展,2015,25(12):28-31.
 LI Zhen,JIA Rui-yu. An Improved K-means Ant Colony Clustering Algorithm[J].,2015,25(12):28-31.
点击复制

 一种改进的K-means蚁群聚类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年12期
页码:
28-31
栏目:
智能、算法、系统工程
出版日期:
2015-12-10

文章信息/Info

Title:
 An Improved K-means Ant Colony Clustering Algorithm
文章编号:
1673-629X(2015)12-0028-04
作者:
 李振贾瑞玉
 安徽大学 计算机科学与技术学院
Author(s):
 LI ZhenJIA Rui-yu
关键词:
 聚类K-means算法蚁群聚类算法聚类组合变异
Keywords:
 clusteringK-means algorithmant colony clustering algorithmclustering combinationvariation
分类号:
TP301.6
文献标志码:
A
摘要:
 现有的K-means蚁群聚类算法,首先进行K-means聚类算法操作,快速、粗略地确定初始聚类中心,接着根据上一步获得的聚类中心再进行蚁群算法聚类操作,有效地解决蚁群聚类算法收敛速度过慢的问题. 研究发现,现有的K-means蚁群聚类算法并没有改善算法在迭代后期易出现收敛于非全局最优的缺陷. 针对这一问题,提出一种改进的K-means蚁群聚类算法. 每次迭代结束时,随机选择一个或多个簇,再从选中的簇里选择含有信息素最小的节点进行变异操作,把选中的节点变异到其他簇,计算评价值判断变异是否进行. 仿真实验结果表明,用F值表示的平均值和最差结果都比原有的算法较好,有效解决了原有算法易收敛于非全局最优及早熟问题,但由于变异操作使算法运行时间相对较长.
Abstract:
 Existed K-means ant colony clustering algorithm carries out K -means algorithm operation,fast and roughly determines the clustering center,then according to rough clustering center,ant colony clustering algorithm is conducted again to solve the problem of low convergence speed effectively. The research shows that the existed K-means any colony clustering algorithm doesn’t improve the defect of converging to non-global optimal in late iteration. In order to solve this problem,a modified K-means ant colony clustering algorithm is presented. At the end of each iteration,randomly select one or more clusters,and then choose the point from the selected cluster with minimum pheromones for mutation,the mutation selecting node to another cluster,evaluation value is calculated to judge whether to mu-tate. Experimental results show that the average and worst results indicated by F value are better than the original algorithm,effectively solving the problem that is easy to converge to non-global optimal and premature,but it takes a longer running time.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(12):36.
[2]张甜 罗眉 孟晓红 赵宗涛.一种基于状态特征的航天发射故障诊断技术[J].计算机技术与发展,2010,(01):93.
 ZHANG Tian,LUO Mei,MENG Xiao-hong,et al.A Technology in Fault Diagnosis of Spaceflight Launch Based on State Character[J].,2010,(12):93.
[3]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(12):84.
[4]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(12):179.
[5]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(12):109.
[6]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(12):171.
[7]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
 YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(12):111.
[8]刘淑英 程国建 彭方.人工神经生长细胞结构网络在医疗诊断的应用[J].计算机技术与发展,2009,(05):231.
 LIU Shu-ying,CHENG Guo-jian,PENG Fang.Applications of Growing Cell Structures of Artificial Neural Network for Medical Diagnosis[J].,2009,(12):231.
[9]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(12):58.
[10]王园园 倪志伟 赵裕啸 伍章俊.基于决策树的模糊聚类评价算法及其应用[J].计算机技术与发展,2009,(09):232.
 WANG Yuan-yuan,NI Zhi-wei,ZHAO Yu-xiao,et al.Fuzzy Clustering Evaluation Algorithm Based on Decision Tree and Application[J].,2009,(12):232.
[11]李荟,谢强,丁秋林. 一种基于情景的协同过滤推荐算法[J].计算机技术与发展,2014,24(10):42.
 LI Hui,XIEQiang,DING Qiu-lin. A Collaborative Filtering Recommendation Algorithm Based on Scenario[J].,2014,24(12):42.
[12]吴楠,秦锋,姜太平. 一种基于用户情境聚类的个性化推荐算法[J].计算机技术与发展,2014,24(10):106.
 WU Nan,QIN Feng,JIANG Tai-ping. A Personalized Recommendation Algorithm Based on User Context Clustering[J].,2014,24(12):106.
[13]高蕾[],曹建忠[]. 基于可穿戴传感器的行为识别随机逼近模型[J].计算机技术与发展,2014,24(12):83.
 GAO Lei[],CAO Jian-zhong[]. Activity Recognition Using Stochastic Approximation Model Based on Wearable Sensor[J].,2014,24(12):83.
[14]邵明来,秦亮曦. 集粒度计算、蚁群算法与模糊思想的聚类算法[J].计算机技术与发展,2015,25(02):78.
 SHAO Ming-lai,QIN Liang-xi. Clustering Algorithm Combined Granular Computing,Ant Colony Algorithm and Fuzzy Idea[J].,2015,25(12):78.
[15]刘华春,侯向宁,杨忠. 基于聚类与关联的入侵检测系统研究设计[J].计算机技术与发展,2015,25(07):133.
 LIU Hua-chun,HOU Xiang-ning,YANG Zhong. Research and Design of Intrusion Detection System Based on Association and Clustering[J].,2015,25(12):133.
[16]王玉雷,李玲娟. 一种密度和划分结合的聚类算法[J].计算机技术与发展,2015,25(09):53.
 WANG Yu-le,LI Ling-juan. A Clustering Algorithm of Combination of Density and Division[J].,2015,25(12):53.
[17]王伟,李玲娟. 一种基于聚类的社团划分算法[J].计算机技术与发展,2015,25(10):119.
 WANG Wei,LI Ling-juan. A Clustering-based Community Division Algorithm[J].,2015,25(12):119.
[18]余琨,荆晓远,吴飞,等. 基于竞争聚集的K-SVD字典学习算法[J].计算机技术与发展,2015,25(11):44.
 YU Kun,JING Xiao-yuan,WU Fei,et al. K-SVD Dictionary Learning Algorithm Based on Competitive Agglomeration[J].,2015,25(12):44.
[19]严静静,张腾飞. 基于自适应的粗糙C-均值聚类算法[J].计算机技术与发展,2016,26(03):67.
 YAN Jing-jing,ZHANG Teng-fei. Rough C-means Clustering Algorithm Based on Self-adaption[J].,2016,26(12):67.
[20]郭涵阳,高曼如,沈良忠. Moodle平台师生访问行为日志统计与挖掘研究[J].计算机技术与发展,2016,26(11):168.
 GUO Han-yang,GAO Man-ru,SHEN Liang-zhong. Research on Statistics and Mining of Log Data about Visiting Behavior for Both Teachers and Students from Moodle[J].,2016,26(12):168.

更新日期/Last Update: 2016-01-28