[1]陈平 宋玉蓉 蒋国平.基于多维聚类挖掘的异常检测方法研究[J].计算机技术与发展,2012,(07):136-139.
 CHEN Ping,SONG Yu-rong,JIANG Guo-ping.Multidimensional Clustering Based Anomaly Detection Research[J].,2012,(07):136-139.
点击复制

基于多维聚类挖掘的异常检测方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年07期
页码:
136-139
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Multidimensional Clustering Based Anomaly Detection Research
文章编号:
1673-629X(2012)07-0136-04
作者:
陈平1 宋玉蓉2 蒋国平2
[1]南京邮电大学计算机学院[2]南京邮电大学自动化学院
Author(s):
CHEN Ping SONG Yu-rong JIANG Guo-ping
[1]College of Computer, Nanjing University of Posts and Telecommunications[2]College of Automation, Nanjing University of Posts and Telecommunications
关键词:
聚类异常检测网络安全
Keywords:
clustering anomaly detection network security
分类号:
TP309
文献标志码:
A
摘要:
网络异常检测是网络管理中非常重要的课题,因此已在近年来得到广泛研究。人们在该领域提出了许多先进的网络流量异常检测方法,但是自动准确地对网络流量进行分类和识别来发现网络中的异常流星仍然是一个非常具有挑战性的问题。文中提出了一种基于多维聚类挖掘的异常检测方法,通过两个阶段来实现异常检测。第一阶段先通过多维聚类挖掘算法,自动对网络中的流量进行多维聚类,第二阶段通过计算多维聚类的异常度来实现异常检测。通过文中的方法,网络中的异常流量被自动归类到不同的有意义的聚类中,通过对这些聚类进行分析可以发现网络中的异常行为。最后通过实验对算法进行了验证,结果表明该方法能够有效检测网络中的异常流量
Abstract:
Network anomaly detection which is a very important issue in network management has been extensively studied in recent years. Although people in the field made a number of advanced works, the accuracy of automatic classification of network traffic to detect and identify abnormal network traffic is still a very challenging problem. It presents a multidimensional clustering based anomaly detection method, by two stages to achieve anomaly detection. The first phase, through multidimensional clastering algorithms, network traffic is automatically mined into different multidimensional clusters. The second phase calculates the degree of multidimensional clusters to achieve anomaly detection. By this method, the abnormal network traffic is automatically classified into different meaningful clusters, and then these clusters can be used to find network anomalies. Finally, this algorithm was validated through experiments, the results show that the method can effectively identify abnormal network traffic

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(07):36.
[2]张甜 罗眉 孟晓红 赵宗涛.一种基于状态特征的航天发射故障诊断技术[J].计算机技术与发展,2010,(01):93.
 ZHANG Tian,LUO Mei,MENG Xiao-hong,et al.A Technology in Fault Diagnosis of Spaceflight Launch Based on State Character[J].,2010,(07):93.
[3]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(07):84.
[4]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(07):179.
[5]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(07):109.
[6]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(07):148.
[7]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(07):171.
[8]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
 YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(07):111.
[9]刘淑英 程国建 彭方.人工神经生长细胞结构网络在医疗诊断的应用[J].计算机技术与发展,2009,(05):231.
 LIU Shu-ying,CHENG Guo-jian,PENG Fang.Applications of Growing Cell Structures of Artificial Neural Network for Medical Diagnosis[J].,2009,(07):231.
[10]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(07):58.
[11]刘华春,侯向宁,杨忠. 基于聚类与关联的入侵检测系统研究设计[J].计算机技术与发展,2015,25(07):133.
 LIU Hua-chun,HOU Xiang-ning,YANG Zhong. Research and Design of Intrusion Detection System Based on Association and Clustering[J].,2015,25(07):133.

备注/Memo

备注/Memo:
江苏省自然科学基金项目(BK2010526);教育部博士点基金项目(20103223110003);南京邮电大学引进人才项目(NY209021)陈平(1982-),男,硕士研究生,研究方向为信息安全、网络安全;宋玉蓉,教授,研究方向为信息安全、复杂网络、病毒传播;蒋国平,教授,研究方向为复杂动态网络
更新日期/Last Update: 1900-01-01