[1]鲍先富,强赞霞,李丹阳,等.基于组卷积特征融合的 One-Stage 目标检测模型[J].计算机技术与发展,2021,31(11):86-94.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 015]
 BAO Xian-fu,QIANG Zan-xia,LI Dan-yang,et al.One-Stage Target Detection Model Based on Group ConvolutionFeature Fusion[J].,2021,31(11):86-94.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 015]
点击复制

基于组卷积特征融合的 One-Stage 目标检测模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年11期
页码:
86-94
栏目:
图形与图像
出版日期:
2021-11-10

文章信息/Info

Title:
One-Stage Target Detection Model Based on Group ConvolutionFeature Fusion
文章编号:
1673-629X(2021)11-0086-09
作者:
鲍先富强赞霞李丹阳杨 瑞
中原工学院,河南 郑州 450007
Author(s):
BAO Xian-fuQIANG Zan-xiaLI Dan-yangYANG Rui
Zhongyuan University of Technology,Zhengzhou 450007,China
关键词:
卷积神经网络目标检测残差网络特征融合金字塔通道洗牌组卷积
Keywords:
convolutional neural networktarget detectionresidual networkfeature fusion pyramidchannel shufflegroup convolution
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 11. 015
摘要:
由于移动终端计算能力和内存大小的限制, 在移动设备上进行实时目标检测具有非常大的挑战性。 为了更好地在无人驾驶汽车等移动设备上进行目标检测, 该文以 YOLOv3 单阶段目标检测模型为基础,对部署在移动设备上的目标检测模型进行优化, 以提高模型的检测精度( MAP)并降低计算复杂度。 具体改进措施为:基于 DarkNet-53 为主干网络引入组卷积和通道洗牌技术;基于 M. G. Hluchyj 等学者提出的网络设计指导原则,对主干网络的残差单元和下采样单元进行修改优化;为减轻 YOLOv3 模型对于密集目标的漏选和标签重写问题,引入特征混合金字塔模型。 通过在 Pascal VOC2007和 VOC2012 数据集上进行实验对比,优化模型的整体精度较 YOLOv3 提高 8. 17% ,模型参数量降低 1. 21 M,在与 YOLOv4的参数量大体相等的情况下达到了 YOLOv4 的检测精度。
Abstract:
Due to the limitations of mobile terminal computing power and memory size,real-time target detection on mobile devices is quite challenging.? ? ? ?In order to better perform target detection on mobile devices such as driver less cars,based on YOLOv3 single-stage target detection model,? ? ?the target detection model deployed on the mobile device is optimized to improve the detection accuracy ( MAP)and reduce the computational complexity. The specific improvement measures are as follows:the introduction of volume and channel shuffling technology based on the DarkNet-53 backbone network; based on the network design guidelines proposed by scholars such as MG Hluchyj,the residual unit and down-sampling unit of the backbone network are modified and optimized; the feature mixture pyramid model is introduced to reduce the YOLOv3 model’ s omission of dense targets and label rewriting. Through experimental comparison on the Pascal VOC2007 and VOC2012 data sets,the overall accuracy of the optimized model is 8. 17% higher than that of YOLOv3,and the model parameter is reduced by 1. 21 M. The detection accuracy? of YOLOv4 is reached when the parameter quantity of YOLOv4 is roughly equal.

相似文献/References:

[1]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
 LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(11):29.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(11):179.
[3]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(11):60.
[4]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(11):181.
[5]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(11):37.
[6]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100.
 LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(11):100.
[7]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(11):221.
[8]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(11):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[9]章文洁[][],黄旻[],张桂峰[]. 滤光片多光谱成像中运动目标场景误配准修正[J].计算机技术与发展,2016,26(01):18.
 ZHANG Wen-jie[][],HUANG Min[],ZHANG Gui-feng[]. Misregistration Correction for Moving Object Scene in Filter-type Multispectral Imaging[J].,2016,26(11):18.
[10]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(11):31.
[11]许必宵,宫 婧,孙知信.基于卷积神经网络的目标检测模型综述[J].计算机技术与发展,2019,29(12):87.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
 XU Bi-xiao,GONG Jing,SUN Zhi-xin.A Survey of Object Detection Models Based on Convolutional Neural Networks[J].,2019,29(11):87.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
[12]鲍润嘉,侯庆山,邢进生.一种改进的 SSD 网络车载图像检测方法[J].计算机技术与发展,2021,31(02):85.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 016]
 BAO Run-jia,HOU Qing-shan,XING Jin-sheng.An Improved SSD Network Vehicle Image Detection Method[J].,2021,31(11):85.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 016]
[13]张永福,宋海林,班 越,等.融合特征的深度学习遥感图像目标检测模型[J].计算机技术与发展,2021,31(09):48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 009]
 ZHANG Yong-fu,SONG Hai-lin,BAN Yue,et al.Fusion Features Based Deep Learning Remote Sensing Image Target Detection Model[J].,2021,31(11):48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 009]
[14]郭健忠,余腾飞,崔玉定,等.基于改进 SSD 的车辆小目标检测算法研究[J].计算机技术与发展,2022,32(03):1.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 001]
 GUO Jian-zhong,YU Teng-fei,CUI Yu-ding,et al.Research on Vehicle Small Target Detection Algorithm Based on Improved SSD[J].,2022,32(11):1.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 001]
[15]李骏峰,杨小军,张凯望.基于 YOLOX-L 算法的安全帽佩戴检测方法[J].计算机技术与发展,2022,32(09):100.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 016]
 LI Jun-feng,YANG Xiao-jun,ZHANG Kai-wang.Safety Helmet Wearing Detection Method Based on YOLOX-L Algorithm[J].,2022,32(11):100.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 016]
[16]曾碧卿,杨 睿,李一娴,等.基于卷积神经网络的零件圆检测方法[J].计算机技术与发展,2023,33(11):64.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 010]
 ZENG Bi-qing,YANG Rui,LI Yi-xian,et al.Part Circle Detection Method Based on Convolutional Neural Network[J].,2023,33(11):64.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 010]
[17]韩 彤,曹铁勇,郑云飞,等.迷彩伪装目标检测的视觉特征偏好研究[J].计算机技术与发展,2023,33(12):193.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 027]
 HAN Tong,CAO Tie-yong,ZHENG Yun-fei,et al.Research on Visual Feature Bias of Camouflaged Object Detection[J].,2023,33(11):193.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 027]

更新日期/Last Update: 2021-11-10