[1]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31-34.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(02):31-34.
点击复制

 基于PCANet-RF的人脸检测系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年02期
页码:
31-34
栏目:
智能、算法、系统工程
出版日期:
2016-02-10

文章信息/Info

Title:
 Face Detection System Based on PCANet-RF
文章编号:
1673-629X(2016)02-0031-04
作者:
 张丹丹李雷
 南京邮电大学 非机构化数据计算理论与应用研究中心
Author(s):
 ZHANG Dan-danLI Lei
关键词:
 人脸检测卷积神经网络随机森林特征提取主成分分析网络
Keywords:
 face detectionconvolutional neural networkrandom forestfeature extractionPCANet
分类号:
TP391
文献标志码:
A
摘要:
 文中提出一种基于简化卷积神经网络的特征提取方法的人脸检测算法。图像的特征提取较为复杂,需要大量的预处理。深度学习减少了特征提取的工作量,卷积神经网络就是这方面应用的典型例子。但是,卷积神经网络参数训练时间过长,调参主要依靠实验人员的调参技巧,这大大降低了卷积神经网络应用的初衷。此外,卷积神经网络的分类能力较弱,分类效果并不好。综合以上两点,文中应用一种简化的深度学习方法PCANet(主成分分析网络)提取图像特征,降低对调参的要求,同时用RF(随机森林)对其进行后期分类,提高人脸识别分类效果。实验结果表明,提出的方法对人脸识别率可以达到99%,进一步证明了PCANet在特征提取方面的优越性。
Abstract:
 A face detection system was presented based on a simple convolutional neural network. Feature extraction of image is usually complicated which needs much pretreatment. Deep learning reduces pretreatment,such as convolutional neural network,but it needs more time of training and requires certain ability to adjust the parameters,which contrary to the original intention. What is more,classification capability and result of convolutional neural network is not well. Combination of above,the PCANet for feature extraction is applied to lower the ability to adjust the parameters and Random Forest for image classification is used to improve the recognition rate. This method has got a recognition rate as 99%. Experiments has confirmed that PCANet-RF can be successfully used in image classification.

相似文献/References:

[1]李宏伟 陶亮.复杂背景不同光照条件下彩色图像中人脸检测[J].计算机技术与发展,2009,(02):52.
 LI Hong-wei,TAO Liang.Face Detection in Complicated Backgrounds and Different Illumination Conditions of Color Images[J].,2009,(02):52.
[2]俞扬信 严云洋.视频序列中的人脸检测与定位算法研究[J].计算机技术与发展,2009,(02):109.
 YU Yang-xin,YAN Yun-yang.Algorithm Study of Face Detection and Location in Video Sequence[J].,2009,(02):109.
[3]金燕 陶亮.基于人眼定位的人脸检测与归一化算法[J].计算机技术与发展,2009,(04):95.
 JIN Yan,TAO Liang.Face Detection and Normalization Based on Localization of Human Eyes[J].,2009,(02):95.
[4]佘九华 王敬东 李鹏.基于Camshift的人脸跟踪算法[J].计算机技术与发展,2008,(09):12.
 SHE Jiu-hua,WANG Jing-dong,LI Peng.Face Tracking Algorithm Based on Camshift[J].,2008,(02):12.
[5]李启娟 李金屏.基于轮廓信息的人脸检测[J].计算机技术与发展,2008,(09):108.
 LI Qi-juan,LI Jin-ping.Face Detection Based on Contour Information[J].,2008,(02):108.
[6]陈伟琦 梁一川 易强 秦文虎.基于肤色和Adaboost算法的人脸检测研究[J].计算机技术与发展,2008,(12):44.
 CHEN Wei-qi,LIANG Yi-chuan,YI Qiang,et al.Face Detection Based on Skin Color and Adaboost Arithmetic[J].,2008,(02):44.
[7]贾灵芝 李岚 钱坤喜.基于自适应光线补偿的人脸检测算法[J].计算机技术与发展,2008,(12):120.
 JIA Ling-zhi,LI Lan,QIAN Kun-xi.Face Detection Algorithm Based on Self- adaptive Light Compensation[J].,2008,(02):120.
[8]袁芬萍 季桂树.基于SVM的三阶段人脸检测方法的研究与应用[J].计算机技术与发展,2007,(09):133.
 YUAN Fen-ping,JI Gui-shu.Research and Application about Three- Stage Face Detection Method Based on SVM[J].,2007,(02):133.
[9]王晶 杨煜.基于边缘方向直方图的Adaboost人脸检测[J].计算机技术与发展,2007,(12):5.
 WANG Jing,YANG Yu.Adaboost for Face Detection Based on Edge Orientation Histograms[J].,2007,(02):5.
[10]邵平 杨路明 曾耀荣.计算旋转Harr型特征的积分图像算法改进[J].计算机技术与发展,2006,(11):146.
 SHAO Ping,YANG. Lu-ming,ZENG Yao-rong.An Improved Algorithm of Integral Image for Computing Rotated Harr- Like Features[J].,2006,(02):146.
[11]陈骁,金鑫. 基于级联Adaboost与示例投票的人脸检测[J].计算机技术与发展,2015,25(12):18.
 CHEN Xiao,JIN Xin. Face Detection Based on Cascade Adaboost and Exemplar Voting[J].,2015,25(02):18.
[12]裴向杰,唐红昇,陈鹏. 融合YCbCr肤色分割的不良图像检测算法研究[J].计算机技术与发展,2015,25(12):80.
 PEI Xiang-jie,TANG Hong-sheng,CHEN Peng. Research on Objectionable Image Detection Algorithm Based on YCbCr Skin Segmentation[J].,2015,25(02):80.
[13]欧阳杰臣[],黄曜[],高珏[],等. 基于Android人脸美化App的研究与实现[J].计算机技术与发展,2016,26(03):9.
 OUYANG Jie-chen[],HUANG Yao[],GAO Jue[],et al. Research and Implementation of Face Beautification App Based on Android[J].,2016,26(02):9.
[14]邵虹,耿昊. 基于肤色信息和模板匹配的人脸检测与提取[J].计算机技术与发展,2016,26(11):49.
 SHAO Hong,GENG Hao. Face Detection and Extraction Based on Skin-color Information and Template Matching[J].,2016,26(02):49.
[15]王攀,李少波. 基于肤色和FBLBP算法的人脸检测[J].计算机技术与发展,2017,27(01):44.
 WANG Pan,LI Shao-bo. Face Detection Based on Skin Color and FBLBP Algorithm[J].,2017,27(02):44.
[16]陈凡[],童莹[],曹雪虹[]. 复杂环境下基于视觉显著性的人脸目标检测[J].计算机技术与发展,2017,27(01):48.
 CHEN Fan[],TONG Ying[],CAO Xue-hong[]. Face Target Detection of Visual Saliency in Complex Environment[J].,2017,27(02):48.
[17]夏雪婷,胡正飞,潘玲云. 基于OpenCV人脸检测的室内照明自动控制系统[J].计算机技术与发展,2017,27(04):184.
 XIA Xue-ting,HU Zheng-fei,PAN Ling-yun. Indoor Automatic Lighting Control System with OpenCV Face Detection[J].,2017,27(02):184.
[18]翟社平,李炀,马蒙雨,等. 基于LBP和SVM的人脸检测[J].计算机技术与发展,2017,27(09):44.
 ZHAI She-ping,LI Yang,MA Meng-yu,et al. Face Detection Based on LBP and SVM[J].,2017,27(02):44.

更新日期/Last Update: 2016-04-14