[1]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60-63.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(07):60-63.
点击复制

基于改进的混合高斯模型的目标检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年07期
页码:
60-63
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Target Detection Method Based on Improved Gaussian Mixture Model
文章编号:
1673-629X(2012)07-0060-04
作者:
曙光1 张超1 蔡则苏2
[1]哈尔滨理工大学计算机学院[2]哈尔滨工业大学计算机科学与技术学院
Author(s):
SHU GuangZHANG Chao CAI Ze-su
[1]Institute of Computer, Harbin University of Science and Technology[2]Institute of Computer Science and Technology,Harbin Institute of Technology
关键词:
混合高斯模型目标检测背景差分光照影响
Keywords:
Gaussian mixture model target detection background difference illumination effect
分类号:
TP301
文献标志码:
A
摘要:
混合高斯模型是环境监控的一种有效方法,能及时侦测环境的异常变化,其基本思想为当环境与建立的模型相匹配时为背景,否则为前景。利用混合高斯模型在图像内进行目标检测,在模型替换的时候,前景容易误替换进模型内,影响背景差分效果。同时采用像素为单位做前景判断,信息量往往不足,不能有效地表示环境特征。高斯模型也存在对光照影响消除能力不足的问题,光照发生时,背景会发生变化,如果不及时检测出来,排除光照,就会造成误检,影响系统的准确性。文中针对这些问题提出了一种解决方案,并用实验证明了其有效性
Abstract:
Gauss mixture model is an effective method for environmental monitoring, which can detect the abnormal changes in the environment timely, the basic thought of Gauss mixture model is when the environment and the established model matches, it is as the background,or the foreground. By using Gaussian mixture model for target detection in the image,foreground is mistakenly substituted into the model easily when model replaces, effecting background difference results. At the same time using pixels to prospect judgment, the information is often insufficient, which can not effectively express environmental characteristics. Gauss mixture model also exists the problem that the ability of illumination effect removing is not ideal, when light occurs, the background will be changed, if not promptly detected the changes, excluding the light, it will cause false detection, affecting the accuracy of the system. Aiming at these problems,put forward a solution and use experiment to prove the validity in the paper

相似文献/References:

[1]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
 LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(07):29.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(07):179.
[3]李亚玲 徐荣青 聂桂军 田俊青 姚晓宇.适应场景光照变化的运动目标检测算法[J].计算机技术与发展,2011,(02):140.
 LI Ya-ling,XU Rong-qing,NIE Gui-jun,et al.Moving Object Detection Method for Change in Scene Light[J].,2011,(07):140.
[4]杨宁 杨敏.基于改进的混合高斯模型的运动目标提取[J].计算机技术与发展,2012,(07):20.
 YANG Ning,YANG Min.Moving Object Extraction Based on Improved Gaussian Mixture Model[J].,2012,(07):20.
[5]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(07):181.
[6]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(07):37.
[7]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100.
 LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(07):100.
[8]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(07):221.
[9]章文洁[][],黄旻[],张桂峰[]. 滤光片多光谱成像中运动目标场景误配准修正[J].计算机技术与发展,2016,26(01):18.
 ZHANG Wen-jie[][],HUANG Min[],ZHANG Gui-feng[]. Misregistration Correction for Moving Object Scene in Filter-type Multispectral Imaging[J].,2016,26(07):18.
[10]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(07):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]

备注/Memo

备注/Memo:
国家自然科学基金(61075076)曙光(1970-),男,黑龙江哈尔滨人,硕士研究生导师,副教授,研究方向为智能机器人、机器视觉;张超(1986-),男,硕士研究生,研究方向为机器视觉
更新日期/Last Update: 1900-01-01