[1]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100-106.
 LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(07):100-106.
点击复制

 步态识别关键技术研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年07期
页码:
100-106
栏目:
智能、算法、系统工程
出版日期:
2015-07-10

文章信息/Info

Title:
 Research on Critical Techniques in Gait Recognition
文章编号:
1673-629X(2015)07-0100-07
作者:
 卢官明衣美佳
 南京邮电大学 通信与信息工程学院
Author(s):
 LU Guan-mingYI Mei-jia
关键词:
 步态识别目标检测特征提取分类判决
Keywords:
 gait recognitiontarget detectionfeature extractionclassification judge
分类号:
TP391
文献标志码:
A
摘要:
 高新技术的高速发展,使得越来越多的人对生物识别技术予以关注。步态识别技术是一种新颖的生物特征识别技术,它通过人体行走姿态进行身份识别与认证,在安全监控和国防军事等领域的应用潜力也获得越来越多的关注。文中首先分析了步态识别的研究意义和背景,以及步态识别系统的原理,再从主要评价指标、运动目标提取、步态特征提取、分类判决等几个主要方面介绍步态识别的技术现状,并分析了步态识别现存的困难和未来的发展方向。
Abstract:
 With the rapid development of advanced technology,biometrics recognition is paid more and more attention. Gait recognition is a novel biometrics recognition technology,which can recognize and identify a person by walking style. And it is catching more and more attention in the field of security monitoring and national defense and military. Firstly,the meaning and background of gait recognition are analyzed,followed by the basic theory of gait recognition. Then,gait recognition technology is introduced from the aspects of main evalu-ation index,motion target extraction,gait feature extraction and classification judge and so on. In addition,some research challenges and future directions in gait recognition are discussed.

相似文献/References:

[1]谢林海[] 刘相滨 佟施[].基于步态的身份识别技术[J].计算机技术与发展,2007,(09):106.
 XIE Lin-hai,LIU Xiang-bin,TONG Shi.Survey of Gait- Based Identification[J].,2007,(07):106.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.

更新日期/Last Update: 2015-09-07