[1]许必宵,宫 婧,孙知信.基于卷积神经网络的目标检测模型综述[J].计算机技术与发展,2019,29(12):87-92.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
 XU Bi-xiao,GONG Jing,SUN Zhi-xin.A Survey of Object Detection Models Based on Convolutional Neural Networks[J].,2019,29(12):87-92.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
点击复制

基于卷积神经网络的目标检测模型综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年12期
页码:
87-92
栏目:
智能、算法、系统工程
出版日期:
2019-12-10

文章信息/Info

Title:
A Survey of Object Detection Models Based on Convolutional Neural Networks
文章编号:
1673-629X(2019)12-0087-06
作者:
许必宵12 宫 婧23 孙知信23
1. 南京邮电大学 物联网学院; 2. 南京邮电大学 宽带无线通信与传感器网络技术重点实验室; 3. 南京邮电大学 现代邮政学院,江苏 南京 210003
Author(s):
XU Bi-xiao 12 GONG Jing 23 SUN Zhi-xin 23
1.School of Internet of Things,Nanjing University of Posts and Telecommunications; 2.Key Laboratory of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications; 3.School of Modern Posts,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
卷积神经网络目标检测深度学习计算机视觉
Keywords:
convolutional neural networkobject detectiondeep learningcomputer vision
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 12. 016
摘要:
目标检测一直是计算机视觉领域中的研究热点。 随着深度学习技术的迅猛发展,基于卷积神经网络的目标检测模型逐渐被广泛关注。 文中主要对基于卷积神经网络的目标检测模型的现状进行综述。 首先,介绍了目标检测的相关基础,特别罗列了一些目标检测模型中常用的卷积神经网络结构,也介绍了检测模型常用的梯度下降法训练方式。 然后,重点从候选区域和回归方法两类对近年来提出的优秀模型进行综述,候选区域一类也创新地使用特征尺度进行区分,说明了多尺度特征能够有效提高小尺度目标检测精度。 对于每一类检测模型,根据同一数据集上的检测结果分析这些模型的优势与缺陷,最后根据分析的结果总结一些基于卷积神经网络的目标检测模型的优化方案。
Abstract:
Object detection has always been a research hotspot in the field of computer vision. With the rapid development of deep learning technology,the object detection model based on convolutional neural network is widely concerned. We mainly review the current status of object detection models based on convolutional neural networks. First of all,we introduce the relevant basis of target detection,especially the convolutional neural network structure commonly used in some object detection models,and also introduce the gradient descent training method commonly used in detection models. Then,we summarize the excellent models proposed in recent years from region-based and region-free and compare the test results. The region-based models are distinguished with feature scales intelligently,which shows that multi-scale features can effectively improve the accuracy of small-scale object detection. For each type of detection model,we analyze the advantages and disadvantages of these models based on the results on the same data set. Finally,based on the analysis results,some optimization schemes based on the convolutional neural network are proposed.

相似文献/References:

[1]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
 LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(12):29.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(12):179.
[3]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(12):60.
[4]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(12):181.
[5]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(12):37.
[6]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100.
 LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(12):100.
[7]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(12):221.
[8]章文洁[][],黄旻[],张桂峰[]. 滤光片多光谱成像中运动目标场景误配准修正[J].计算机技术与发展,2016,26(01):18.
 ZHANG Wen-jie[][],HUANG Min[],ZHANG Gui-feng[]. Misregistration Correction for Moving Object Scene in Filter-type Multispectral Imaging[J].,2016,26(12):18.
[9]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(12):31.
[10]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(12):11.
[11]鲍润嘉,侯庆山,邢进生.一种改进的 SSD 网络车载图像检测方法[J].计算机技术与发展,2021,31(02):85.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 016]
 BAO Run-jia,HOU Qing-shan,XING Jin-sheng.An Improved SSD Network Vehicle Image Detection Method[J].,2021,31(12):85.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 016]
[12]张永福,宋海林,班 越,等.融合特征的深度学习遥感图像目标检测模型[J].计算机技术与发展,2021,31(09):48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 009]
 ZHANG Yong-fu,SONG Hai-lin,BAN Yue,et al.Fusion Features Based Deep Learning Remote Sensing Image Target Detection Model[J].,2021,31(12):48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 009]
[13]鲍先富,强赞霞,李丹阳,等.基于组卷积特征融合的 One-Stage 目标检测模型[J].计算机技术与发展,2021,31(11):86.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 015]
 BAO Xian-fu,QIANG Zan-xia,LI Dan-yang,et al.One-Stage Target Detection Model Based on Group ConvolutionFeature Fusion[J].,2021,31(12):86.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 015]
[14]郭健忠,余腾飞,崔玉定,等.基于改进 SSD 的车辆小目标检测算法研究[J].计算机技术与发展,2022,32(03):1.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 001]
 GUO Jian-zhong,YU Teng-fei,CUI Yu-ding,et al.Research on Vehicle Small Target Detection Algorithm Based on Improved SSD[J].,2022,32(12):1.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 001]
[15]李骏峰,杨小军,张凯望.基于 YOLOX-L 算法的安全帽佩戴检测方法[J].计算机技术与发展,2022,32(09):100.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 016]
 LI Jun-feng,YANG Xiao-jun,ZHANG Kai-wang.Safety Helmet Wearing Detection Method Based on YOLOX-L Algorithm[J].,2022,32(12):100.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 016]
[16]曾碧卿,杨 睿,李一娴,等.基于卷积神经网络的零件圆检测方法[J].计算机技术与发展,2023,33(11):64.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 010]
 ZENG Bi-qing,YANG Rui,LI Yi-xian,et al.Part Circle Detection Method Based on Convolutional Neural Network[J].,2023,33(12):64.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 010]
[17]韩 彤,曹铁勇,郑云飞,等.迷彩伪装目标检测的视觉特征偏好研究[J].计算机技术与发展,2023,33(12):193.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 027]
 HAN Tong,CAO Tie-yong,ZHENG Yun-fei,et al.Research on Visual Feature Bias of Camouflaged Object Detection[J].,2023,33(12):193.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 027]

更新日期/Last Update: 2019-12-10