[1]郭娟,何坤,周激流. 基于卡通提取的自然图像分割[J].计算机技术与发展,2016,26(02):12-16.
 GUO Juan,HE Kun,ZHOU Ji-liu. Natural Image Segmentation Based on Cartoon Component Extracting[J].,2016,26(02):12-16.
点击复制

 基于卡通提取的自然图像分割()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年02期
页码:
12-16
栏目:
智能、算法、系统工程
出版日期:
2016-02-10

文章信息/Info

Title:
 Natural Image Segmentation Based on Cartoon Component Extracting
文章编号:
1673-629X(2016)02-0012-05
作者:
 郭娟何坤周激流
 四川大学 计算机学院
Author(s):
 GUO JuanHE KunZHOU Ji-liu
关键词:
 图像分割卡通分量纹理分量保边水平集
Keywords:
 image segmentationcartoon componenttexture componentedge preservinglevel set
分类号:
TP301.6
文献标志码:
A
摘要:
 传统图像分割方法中基于边缘的水平集图像分割对纹理丰富的自然图像存在过分割和欠分割现象。自然图像含有丰富纹理,为了抑制纹理对图像分割的影响,文中结合ROF的保边模型和Y. Meyer的保纹理模型,将图像分解为卡通分量与纹理分量之和,根据纹理的像素变化特性将其表示为一个函数梯度的散度,建立了保边卡通提取的数学模型。结合对象轮廓与卡通分量边缘之间的关系,运用固定点迭代算法提取图像的卡通分量,并对卡通分量运用基于水平集的曲线演化实现自然图像分割。实验结果表明:该算法提取的卡通分量继承传统全变分算法优点,实现了纹理区域近似常数表示,模糊了对象内部的弱边缘,保护了对象轮廓,在一定程度上抑制了纹理对图像分割的影响。
Abstract:
 The traditional edge based level set image segmentation may be over- or under segmentation for nature scene,rich in texture. To suppress the texture on the influence of the image segmentation,propose a new model for natural image segmentation,which follows results of R. O. F. edge-preserving model and Y. Meyer texture-preserving model,using it to extract images to cartoon component and texture component. According to the pixel variation characteristics of texture in the spatial domain,express texture as the divergence of function gradient and build a new cartoon-extracting model in the image domain. In addition,design diverse equation for the model by fixed point iteration algorithm,and the convergence condition by the relationship between the contour of the object and the edge of car-toon component. The experimental results show that the cartoon component extraction algorithm inherits the advantages of traditional total variation algorithm,implementing the approximated constant expression for the texture region,retaining the object contour,bluring weak edges inside the object,to a certain extent,suppressing the effect of texture on segmentation algorithm.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(02):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(02):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(02):101.
[4]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(02):128.
[5]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(02):121.
[6]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(02):105.
[7]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(02):76.
[8]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(02):121.
[9]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(02):69.
[10]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(02):104.
[11]李雷,魏蕴婕. 结合模糊聚类与支持向量机的图像分割[J].计算机技术与发展,2014,24(07):88.
 LI Lei,WEI Yun-jie. Image Segmentation Combined FCM and SVM[J].,2014,24(02):88.
[12]宋欢欢[],李雷[]. 基于模糊熵的自适应多阈值图像分割方法[J].计算机技术与发展,2014,24(12):32.
 SONG Huan-huan[],LI Lei[]. An Adaptive Multi-threshold Image Segmentation Method Based on Fuzzy Entropy[J].,2014,24(02):32.
[13]田若良,刘柏森. 基于频域能量分割的图像模糊度评价方法[J].计算机技术与发展,2015,25(06):101.
 TIAN Ruo-liang,LIU Bai-sen. An Evaluation Method of Image Blur Based on Frequency Domain Energy Partition[J].,2015,25(02):101.
[14]汪昡紫,孙宪坤,高飞. 轨道表面图像处理算法研究[J].计算机技术与发展,2015,25(09):182.
 WANG Xuan-zi,SUN Xian-kun,GAO Fei. Research on Algorithm of Track Surface Image Processing[J].,2015,25(02):182.
[15]叶超. 基于归一化割的血吸虫卵图像分割[J].计算机技术与发展,2015,25(11):27.
 YE Chao. Segmentation of Schistosome Eggs Image Based on Normalized Cut[J].,2015,25(02):27.
[16]张林[],吴振强[]. 基于OpenCV的X光手指骨图像分割方法[J].计算机技术与发展,2015,25(11):200.
 ZHANG Lin[],WU Zhen-qiang[]. X-ray Finger Bone Image Segmentation Method Based on OpenCV[J].,2015,25(02):200.
[17]丁毅,李玉惠,李勃. 基于图像不同亮度区域特征的Gamma矫正方法[J].计算机技术与发展,2016,26(06):37.
 DING Yi,LI Yu-hui,LI Bo. Gamma Correction Based on Different Brightness Regional Features for Images[J].,2016,26(02):37.
[18]洪浩[],霍春宝[],王京[],等. 基于改进Otsu算法在前方目标车辆识别中的研究[J].计算机技术与发展,2016,26(06):78.
 HONG Hao[],HUO Chun-bao[],WANG Jing[],et al. Research on Front Target Vehicle Identification Based on Improved Otsu Algorithm[J].,2016,26(02):78.
[19]王钛[],许斌[],李林国[],等. 基于离散灰狼算法的多级阈值图像分割[J].计算机技术与发展,2016,26(07):30.
 WANG Tai[],XU Bin[],LI Lin-guo[],et al. A Multi-threshold Image Segmentation Algorithm Based on Discrete Grey Wolf Optimization[J].,2016,26(02):30.
[20]李扬,陆璐,崔红霞. 谱聚类图像分割中相似度矩阵构造研究[J].计算机技术与发展,2016,26(07):55.
 LI Yang,LU Lu,CUI Hong-xia. Research on Similarity Matrix Structure in Spectral Clustering Image Segmentation[J].,2016,26(02):55.

更新日期/Last Update: 2016-04-14