[1]刘华春,侯向宁,杨忠. 基于聚类与关联的入侵检测系统研究设计[J].计算机技术与发展,2015,25(07):133-137.
 LIU Hua-chun,HOU Xiang-ning,YANG Zhong. Research and Design of Intrusion Detection System Based on Association and Clustering[J].,2015,25(07):133-137.
点击复制

 基于聚类与关联的入侵检测系统研究设计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年07期
页码:
133-137
栏目:
应用开发研究
出版日期:
2015-07-10

文章信息/Info

Title:
 Research and Design of Intrusion Detection System Based on Association and Clustering
文章编号:
1673-629X(2015)07-0133-05
作者:
 刘华春侯向宁杨忠
 成都理工大学 工程技术学院
Author(s):
 LIU Hua-chun HOU Xiang-ning YANG Zhong
关键词:
 聚类关联入侵检测系统异常检测
Keywords:
 clusteringassociationintrusion detection systemanomaly detection
分类号:
TP393.08
文献标志码:
A
摘要:
 为了提高入侵检测系统的性能,研究了在入侵检测中如何采用数据挖掘中的关联和聚类算法。对于K-Means聚类算法具有的K值确定困难、易受初始值影响等问题,提出了一种预定距离的聚类方法。针对Apriori关联算法扫描事务数据库次数过多,耗费大量的时间处理候选项集的缺陷,提出了改进的2项、3项频繁项集的矩阵挖掘算法。设计了改进的聚类、关联算法的入侵检测系统,并进行了实验。结果表明,该系统能降低误检率,提高检测效率,能够检测未知入侵类型。
Abstract:
 In order to improve the performance of intrusion detection system,research how to use the algorithm of association and cluste-ring in data mining in intrusion detection system. In view of the problem of determining K value hardly and easy influence on initial value, a clustering method of predetermined distance is presented. Aiming at the defects which the Apriori correlation algorithm takes too many time to scan the transaction database,leading to spend a lot of time to deal with candidate set,an improved matrix mining algorithm with the item 2,item 3 frequent item sets is proposed to overcome these disadvantages. And an intrusion detection system based on improved clustering and correlation algorithm is designed,the experiment is carried on. The results show that the system can improve detection effi-ciency accuracy and reduce the false detection rate,which can detect the unknown intrusion type.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(07):36.
[2]张甜 罗眉 孟晓红 赵宗涛.一种基于状态特征的航天发射故障诊断技术[J].计算机技术与发展,2010,(01):93.
 ZHANG Tian,LUO Mei,MENG Xiao-hong,et al.A Technology in Fault Diagnosis of Spaceflight Launch Based on State Character[J].,2010,(07):93.
[3]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(07):84.
[4]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(07):179.
[5]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(07):109.
[6]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(07):171.
[7]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
 YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(07):111.
[8]刘淑英 程国建 彭方.人工神经生长细胞结构网络在医疗诊断的应用[J].计算机技术与发展,2009,(05):231.
 LIU Shu-ying,CHENG Guo-jian,PENG Fang.Applications of Growing Cell Structures of Artificial Neural Network for Medical Diagnosis[J].,2009,(07):231.
[9]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(07):58.
[10]王园园 倪志伟 赵裕啸 伍章俊.基于决策树的模糊聚类评价算法及其应用[J].计算机技术与发展,2009,(09):232.
 WANG Yuan-yuan,NI Zhi-wei,ZHAO Yu-xiao,et al.Fuzzy Clustering Evaluation Algorithm Based on Decision Tree and Application[J].,2009,(07):232.
[11]李荟,谢强,丁秋林. 一种基于情景的协同过滤推荐算法[J].计算机技术与发展,2014,24(10):42.
 LI Hui,XIEQiang,DING Qiu-lin. A Collaborative Filtering Recommendation Algorithm Based on Scenario[J].,2014,24(07):42.
[12]吴楠,秦锋,姜太平. 一种基于用户情境聚类的个性化推荐算法[J].计算机技术与发展,2014,24(10):106.
 WU Nan,QIN Feng,JIANG Tai-ping. A Personalized Recommendation Algorithm Based on User Context Clustering[J].,2014,24(07):106.
[13]高蕾[],曹建忠[]. 基于可穿戴传感器的行为识别随机逼近模型[J].计算机技术与发展,2014,24(12):83.
 GAO Lei[],CAO Jian-zhong[]. Activity Recognition Using Stochastic Approximation Model Based on Wearable Sensor[J].,2014,24(07):83.
[14]邵明来,秦亮曦. 集粒度计算、蚁群算法与模糊思想的聚类算法[J].计算机技术与发展,2015,25(02):78.
 SHAO Ming-lai,QIN Liang-xi. Clustering Algorithm Combined Granular Computing,Ant Colony Algorithm and Fuzzy Idea[J].,2015,25(07):78.
[15]王玉雷,李玲娟. 一种密度和划分结合的聚类算法[J].计算机技术与发展,2015,25(09):53.
 WANG Yu-le,LI Ling-juan. A Clustering Algorithm of Combination of Density and Division[J].,2015,25(07):53.
[16]王伟,李玲娟. 一种基于聚类的社团划分算法[J].计算机技术与发展,2015,25(10):119.
 WANG Wei,LI Ling-juan. A Clustering-based Community Division Algorithm[J].,2015,25(07):119.
[17]余琨,荆晓远,吴飞,等. 基于竞争聚集的K-SVD字典学习算法[J].计算机技术与发展,2015,25(11):44.
 YU Kun,JING Xiao-yuan,WU Fei,et al. K-SVD Dictionary Learning Algorithm Based on Competitive Agglomeration[J].,2015,25(07):44.
[18]李振,贾瑞玉. 一种改进的K-means蚁群聚类算法[J].计算机技术与发展,2015,25(12):28.
 LI Zhen,JIA Rui-yu. An Improved K-means Ant Colony Clustering Algorithm[J].,2015,25(07):28.
[19]严静静,张腾飞. 基于自适应的粗糙C-均值聚类算法[J].计算机技术与发展,2016,26(03):67.
 YAN Jing-jing,ZHANG Teng-fei. Rough C-means Clustering Algorithm Based on Self-adaption[J].,2016,26(07):67.
[20]郭涵阳,高曼如,沈良忠. Moodle平台师生访问行为日志统计与挖掘研究[J].计算机技术与发展,2016,26(11):168.
 GUO Han-yang,GAO Man-ru,SHEN Liang-zhong. Research on Statistics and Mining of Log Data about Visiting Behavior for Both Teachers and Students from Moodle[J].,2016,26(07):168.

更新日期/Last Update: 2015-09-07