[1]于笃发,邵建华,张晶如.基于小波自适应阈值图像去噪方法的研究[J].计算机技术与发展,2013,(08):250-253.
 YU Du-fa,SHAO Jian-hua,ZHANG Jing-ru.Research on Image Denoising Based on Wavelet Adaptive Threshold[J].,2013,(08):250-253.
点击复制

基于小波自适应阈值图像去噪方法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年08期
页码:
250-253
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Image Denoising Based on Wavelet Adaptive Threshold
文章编号:
1673-629X(2013)08-0250-04
作者:
于笃发邵建华张晶如
南京师范大学 物理科学与技术学院
Author(s):
YU Du-faSHAO Jian-huaZHANG Jing-ru
关键词:
图像去噪小波变换多尺度自适应阈值峰值信噪比
Keywords:
image denoisingwavelet transformmulti-scaleadaptive threshold valuepeak signal to noise ratio
文献标志码:
A
摘要:
利用小波变换对图像去噪是一种非常有效的方法。传统的小波去噪算法对图像去噪后的平滑效果不是很好,图像细节清晰度不够高,甚至会产生伪吉布斯现象。针对这些现象,文中提出了一种改进的基于小波变换的多尺度自适应阈值图像去噪方法。该方法根据图像小波分解的特性,确定适合小波分解后不同层系数去噪的较优阈值,然后结合恰当的阈值函数对各层高频系数进行处理来达到去噪效果。实验结果表明,与传统方法相比,该方法运算量较小,能有效去除高斯白噪声,进一步提高峰值性噪比,同时能够很好地保留图像细节信息
Abstract:
Using wavelet transform to filter noises on image is a very effective method. The smoothing effect is not very good of tradition-al wavelet image denoising algorithm,and the image detail precision isn't high enough,even false Gibbs phenomenon can be produced. Aimming at the phenomenon,an improved multi-scale adaptive threshold method of image denoising based on wavelet transformation has been proposed. According to the characteristics of the image wavelet decomposition,this method can determine the better threshold of dif-ferent layers' coefficient for denoising after wavelet decomposition,then process the high frequency coefficient of each layer with appro-priate threshold function to achieve denoising effect. The experimental results show that,compared with traditional methods,this method can effectively remove Gaussian white noise and further improve the peak signal-to-noise ratio,while well preserving image details

相似文献/References:

[1]杨亚 王铮 张素兰 郭飞飞.基于小波变换的多聚焦图像融合[J].计算机技术与发展,2010,(03):56.
 YANG Ya,WANG Zheng,ZHANG Su-lan,et al.Multi - focus Image Fusion Scheme Based on Wavelet Transform[J].,2010,(08):56.
[2]刘会英 张政保 文家福 李占德.一种带纠错编码的小波域自适应盲水印算法[J].计算机技术与发展,2010,(03):140.
 LIU Hui-ying,ZHANG Zheng-bao,WEN Jia-fu,et al.A Wavelet Domain Adaptive Blind Watermarking Algorithm with Error Correcting Encoding[J].,2010,(08):140.
[3]郭航宇 景晓军 尚勇.基于小波变换和数学形态法的车牌定位方法研究[J].计算机技术与发展,2010,(05):13.
 GUO Hang-yu,JING Xiao-jun,SHANG Yong.License Plate Location Method Based on Wavelet Transform and Mathematical Morphology[J].,2010,(08):13.
[4]钱颖雪 左洪福 李耀华.小波与傅里叶变换耦合的静电监测信号去噪法[J].计算机技术与发展,2009,(07):1.
 QIAN Ying-xue,ZUO Hong-fu,LI Yao-hua.Static Monitoring Signal De- noising by Wavelet and FFT[J].,2009,(08):1.
[5]赵兵.小波变换阈值降噪在电力负荷管理终端中的应用[J].计算机技术与发展,2009,(07):206.
 ZHAO Bing.Application of Wavelet Transform Threshold Noise Reduction in Load Management Terminal[J].,2009,(08):206.
[6]张登银 薄顺荣 许扬扬.边缘检测算法改进及其在QoE测定中的应用[J].计算机技术与发展,2009,(08):49.
 ZHANG Deng-yin,BO Shun-rong,XU Yang-yang.Improved Image Edge Detection Algorithm and Its Application in QoE Measurement[J].,2009,(08):49.
[7]朱良燕 毛军军 苗强 吴涛[].合肥市降水变化趋势分形特征分析与预测[J].计算机技术与发展,2009,(09):17.
 ZHU Liang-yan,MAO Jun-jun,MIAO Qiang,et al.Analysis of Precipitation Changes Trend Fractal Features and Forecasts in Hefei[J].,2009,(08):17.
[8]王树梅 王志成 蔡健.一种基于灰度形态学的小波域边缘检测算法[J].计算机技术与发展,2009,(01):32.
 WANG Shu-mei,WANG Zhi-cheng,CAI Jian.A Novel Edge- Detection Algorithm in Wavelet Gray - Scale Morphology[J].,2009,(08):32.
[9]黄伟 王书文.一种基于图像边缘检测的全变分的去噪方法[J].计算机技术与发展,2009,(02):24.
 HUANG Wei,WANG Shu-wen.Total Variation Image Denoising Based on Image Edge Detection[J].,2009,(08):24.
[10]周先国 李开宇.基于提升小波结合DCT变换的图像去噪研究[J].计算机技术与发展,2009,(02):62.
 ZHOU Xian-guo,LI Kai-yu.Image De - noising Research Based on Lifting Wavelet and Discrete Cosine Transform[J].,2009,(08):62.
[11]邢丹俊 王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,(02):42.
 XING Dan-jun,WPNG Ji-cheng.Adaptive Threshold Based on Lifting Wavelet Transform for Image Denoising[J].,2008,(08):42.
[12]李晨 王军锋.一种新的提升小波自适应阈值图像去噪算法[J].计算机技术与发展,2012,(07):78.
 LI Chen,WANG Jun-feng.A New Adaptive Threshold Algorithm of Image Denoising Based on Lifting Wavelet Transform[J].,2012,(08):78.
[13]李智,张根耀,王蓓. 基于一种新的阈值函数的小波图像去噪[J].计算机技术与发展,2014,24(11):100.
 LI Zh,ZHANG Gen-yao,WANG Bei. Wavelet Image Denoising Based on a New Threshold Function[J].,2014,24(08):100.
[14]李晓飞,邱晓晖. 基于小波变换的改进软阈值图像去噪算法[J].计算机技术与发展,2016,26(05):76.
 LI Xiao-fei,QIU Xiao-hui. An Improved Soft-threshold Image Denoising Algorithm Based on Wavelet Transform[J].,2016,26(08):76.
[15]张小燕,吐尔洪江·阿布都克力木. 小波变换的阈值图像去噪算法改进[J].计算机技术与发展,2017,27(03):81.
 ZHANG Xiao-yan,Turghunjan ABDUKIRIM TURKI. Improvement of Threshold Image Denoising Algorithm with Wavelet Transform[J].,2017,27(08):81.

更新日期/Last Update: 1900-01-01