[1]白罡旭,杨海峰,蔡江辉,等.基于混合采样策略与 Fixmatch 的图像分类方法[J].计算机技术与发展,2023,33(11):72-77.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 011]
 BAI Gang-xu,YANG Hai-feng,CAI Jiang-hui,et al.An Image Classification Method Based on Hybrid Sampling Strategy and Fixmatch[J].,2023,33(11):72-77.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 011]
点击复制

基于混合采样策略与 Fixmatch 的图像分类方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年11期
页码:
72-77
栏目:
媒体计算
出版日期:
2023-11-10

文章信息/Info

Title:
An Image Classification Method Based on Hybrid Sampling Strategy and Fixmatch
文章编号:
1673-629X(2023)11-0072-07
作者:
白罡旭1 杨海峰1 蔡江辉12 王玉鹏1
1. 太原科技大学 计算机科学与技术学院,山西 太原 030024;
2. 中北大学,山西 太原 030051
Author(s):
BAI Gang-xu1 YANG Hai-feng1 CAI Jiang-hui12 WANG Yu-peng1
1. School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China;
2. North University of China,Taiyuan 030051,China
关键词:
半监督学习聚类采样策略图像分类数据增强
Keywords:
semi-supervised learningclusteringsampling strategyimage classificationdata augmentation
分类号:
TP181
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 11. 011
摘要:
RUC( Unsupervised Image Clustering with Robust Learning) 是一种为改善聚类性能而提出的图像分类方法,但是由于它的协同训练仅适用于双视图数据集,并且没有考虑到数据
之间相似性对其伪标签采样策略的影响, 此外其使用的Mixmatch 只是单纯地进行 k 次随机增强求均值却没有考虑到强增强与弱增强的联系。 为了解决这些问题,该文提出了HFC
( classification method based on Hybrid sampling strategy and Fixmatch) 。 首先,设计了一种置信度与距离的伪标签采样策略,联合两种策略以提高筛选到正确标签的概率;其次,
使用 Tri-training 取代 Co-training,即通过两个分类器指导第三个分类器进行训练,使得模型不再受限于双视图数据集;最后,采用目前较好的 Fixmatch 的数据增强方法取代 RUC 中Mixmatch 随机增强,以突出强增强与弱增强的联合作用。 HFC 在 CIFAR-10、CIFAR-100 和 STL-10 数据集上进行实验,取得了较好的结果,验证了该方法的有效性。
Abstract:
RUC is an image classification method proposed to improve clustering performance, but its cooperative training is onlyapplicable to two-view data sets. Moreover,the influence?
of the similarity between the data on the pseudo-label sampling strategy wasnot taken into account. In addition,the Mixmatch used simply carried out k sub-random enhancement to find the mean value without considering the relationship between strong enhancement and weak enhancement. To solve these problems, we propose an HFC( classification method based on Hybrid sampling strategy and Fixmatch) . Firstly,a pseudo-label sampling strategy with confidence anddistance is designed,and the two strategies are combined to improve the probability of filtering to the correct label. Secondly,the Tri-training is used instead of Co-training,that is,the third classifier is guided by two classifiers for training,so that the model is no longerlimited by the two-view dataset. Finally,we replace the random Mixmatch augmentation in RUC with the Fixmatch data augmentationmethod to highlight the combined effect of strong enhancement and weak enhancement. Experiments with HFC on CIFAR-10,CIFAR-100 and STL-10 datasets have obtained good results,which verify the effectiveness of the proposed method.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(11):36.
[2]张甜 罗眉 孟晓红 赵宗涛.一种基于状态特征的航天发射故障诊断技术[J].计算机技术与发展,2010,(01):93.
 ZHANG Tian,LUO Mei,MENG Xiao-hong,et al.A Technology in Fault Diagnosis of Spaceflight Launch Based on State Character[J].,2010,(11):93.
[3]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(11):84.
[4]陈锦禾 沈洁.基于信息熵的主动学习半监督分类研究[J].计算机技术与发展,2010,(02):110.
 CHEN Jin-he,SHEN Jie.Active Learning Based on Information Entropy for Semi- supervised Classification[J].,2010,(11):110.
[5]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(11):179.
[6]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(11):109.
[7]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(11):171.
[8]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
 YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(11):111.
[9]刘淑英 程国建 彭方.人工神经生长细胞结构网络在医疗诊断的应用[J].计算机技术与发展,2009,(05):231.
 LIU Shu-ying,CHENG Guo-jian,PENG Fang.Applications of Growing Cell Structures of Artificial Neural Network for Medical Diagnosis[J].,2009,(11):231.
[10]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(11):58.

更新日期/Last Update: 2023-11-10