[1]赵越坤,罗素云,魏 丹,等.基于毫米波雷达和视觉的目标检测方法[J].计算机技术与发展,2023,33(06):35-40.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 006]
 ZHAO Yue-kun,LUO Su-yun,WEI Dan,et al.Target Detection Method Based on Millimeter-wave Radar and Vision[J].,2023,33(06):35-40.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 006]
点击复制

基于毫米波雷达和视觉的目标检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年06期
页码:
35-40
栏目:
媒体计算
出版日期:
2023-06-10

文章信息/Info

Title:
Target Detection Method Based on Millimeter-wave Radar and Vision
文章编号:
1673-629X(2023)06-0035-06
作者:
赵越坤1 罗素云1 魏 丹1 王 琦2
1. 上海工程技术大学 机械与汽车工程学院,上海 201620;
2. 滨海县科技馆,江苏 盐城 224500
Author(s):
ZHAO Yue-kun1 LUO Su-yun1 WEI Dan1 WANG Qi2
1. School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;
2,Binhai County Science and Technology Museum,Yancheng 224500,China
关键词:
深度学习目标检测传感器融合视觉增强毫米波雷达
Keywords:
deep learningtarget detectionsensor fusionvision enhancementmillimeter-wave radar
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 06. 006
摘要:
为了提高目标检测网络对远距离目标的检测能力,以及改善由单一视觉传感器的感知系统抗环境干扰能力差的问题,提出了一种基于毫米波雷达和视觉传感器的多源目标检测方法,视觉图像经由多个毫米波雷达获取的点云信息增强后进行检测。 首先,对增强同一视觉图像的多个雷达点云进行数据拼接,通过坐标转换将雷达点云投影至视觉图像平面,并对超出雷达探测距离的异常点和经过坐标转换后位于视野外部的无效点进行剔除,生成雷达点云图像。 然后,根据雷达点云图像中各雷达点的位置与深度信息,形成对应的感兴趣区域,生成雷达特征图像。 最后,将雷达特征图像与视觉图像在 YOLOv4 网络中的主干特征提取部分进行多级融合,并使用通道注意力机制分配通道权重。 实验结果表明,基于雷达增强的目标检测网络的平均检测精度提高了 10. 93% ,并提高了远距离目标和弱光照条件下的检测精度,具有比传统机器视觉的目标检测方法更好的可靠性和鲁棒性。
Abstract:
In order to improve the ability of target detection network to detect long - range targets and to improve the poor anti -environmental interference ability of the perception system by a single visual sensor,a multi-source target detection method based on millimeter-wave radar and visual sensor is proposed. The visual image is detected after the point cloud information obtained?
by multiple millimeter-wave radar is enhanced. First,several radar point clouds that enhance the same visual image are stitched,projected to the plane ofthe visual image through coordinate transformation,and the abnormal points beyond the radar detection distance and invalid points outsidethe field of view are eliminated to generate the radar point cloud image. Then,according to the position and depth information of eachradar point in the radar point cloud image,the region of interest is formed,and the radar feature image is generated. Finally,the backboneof YOLOv4 network is fused with the radar feature image and the visual image,and the channel weight is allocated using the channelattention mechanism. The experiment shows that the average detection accuracy of target detection network based on radar enhancementis improved by 10. 93% , and the detection accuracy of long - range target and weak illumination condition is improved. It has betterreliability and robustness than traditional machine vision target detection method.

相似文献/References:

[1]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
 LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(06):29.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(06):179.
[3]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(06):60.
[4]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(06):181.
[5]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(06):37.
[6]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100.
 LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(06):100.
[7]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(06):221.
[8]章文洁[][],黄旻[],张桂峰[]. 滤光片多光谱成像中运动目标场景误配准修正[J].计算机技术与发展,2016,26(01):18.
 ZHANG Wen-jie[][],HUANG Min[],ZHANG Gui-feng[]. Misregistration Correction for Moving Object Scene in Filter-type Multispectral Imaging[J].,2016,26(06):18.
[9]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(06):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[10]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(06):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[11]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(06):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[12]丁洪金,宫法明.基于时序分析的人体活动状态识别与定位[J].计算机技术与发展,2019,29(04):82.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 017]
 DING Hong-jin,GONG Fa-ming.Human Activities Recognition and Location Based on Temporal Analysis[J].,2019,29(06):82.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 017]
[13]陈莉君,李 卓.基于深度神经压缩的 YOLO 优化[J].计算机技术与发展,2019,29(12):72.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 013]
 CHEN Li-jun,LI Zhuo.YOLO Optimization Based on Deep Neural Compression[J].,2019,29(06):72.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 013]
[14]许必宵,宫 婧,孙知信.基于卷积神经网络的目标检测模型综述[J].计算机技术与发展,2019,29(12):87.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
 XU Bi-xiao,GONG Jing,SUN Zhi-xin.A Survey of Object Detection Models Based on Convolutional Neural Networks[J].,2019,29(06):87.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
[15]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(06):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[16]宫法明,马玉辉.基于时空双分支网络的人体动作识别研究[J].计算机技术与发展,2020,30(09):23.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 005]
 GONG Fa-ming,MA Yu-hui.Research on Human Action Recognition Based on Space-time Double-branch Network[J].,2020,30(06):23.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 005]
[17]何 松,孙 静,郭乐江,等.基于激光 SLAM 和深度学习的语义地图构建[J].计算机技术与发展,2020,30(09):88.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 016]
 HE Song,SUN Jing,GUO Le-jiang,et al.Semantic Mapping Based on Laser SLAM and Deep Learning[J].,2020,30(06):88.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 016]
[18]余 进,史燕中,王春华,等.一种轻量化目标检测算法研究[J].计算机技术与发展,2020,30(11):42.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 008]
 YU Jin,SHI Yan-zhong,WANG Chun-hua,et al.Research of a Lightweight Object Detection Algorithm[J].,2020,30(06):42.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 008]
[19]樊海玮,史 双,蔺 琪,等.复杂背景下 SAR 图像船舶目标检测算法研究[J].计算机技术与发展,2021,31(10):49.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 009]
 FAN Hai-wei,SHI Shuang,LIN Qi,et al.Research on Ship Target Detection Algorithm in Complex Background SAR Image[J].,2021,31(06):49.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 009]
[20]李 威,李 楠,于清玲.基于 Faster RCNN 的可回收物自动分类算法研究[J].计算机技术与发展,2021,31(增刊):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 020]
 LI Wei,LI Nan,YU Qing-ling.Research on Automatic Classification Algorithm of Recyclables Based on Faster RCNN[J].,2021,31(06):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 020]

更新日期/Last Update: 2023-06-10