[1]金波旭.基于 BM3D 的去噪时间优化算法研究[J].计算机技术与发展,2022,32(S2):52-57.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 009]
 JIN Bo-xu.Research on Denoising Time Optimization Algorithm Based on BM3D[J].,2022,32(S2):52-57.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 009]
点击复制

基于 BM3D 的去噪时间优化算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年S2期
页码:
52-57
栏目:
图形与图像
出版日期:
2022-12-11

文章信息/Info

Title:
Research on Denoising Time Optimization Algorithm Based on BM3D
文章编号:
1673-629X(2022)S2-0052-06
作者:
金波旭
南京航空航天大学 电子信息工程学院,江苏 南京 210016
Author(s):
JIN Bo-xu
School of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
关键词:
三维块匹配图像去噪图像聚类相似块自适应阈值
Keywords:
block-matching and 3D filteringimage denoisingimage clusteringsimilar blockadaptive threshold
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2022. S2. 009
摘要:
由于互联网技术的发展,图像作为一个高效的信息传播载体,在各个领域都有着广泛的应用。 而在传播过程中噪声的存在导致图像无法进行良好的表达,目前三维块匹配( BM3D) 算法是公认的在图像去噪领域最好的算法。 然而传统的 BM3D 算法由于计算的复杂度较高导致处理时间较长,具有一定的局限性。 因此根据其去噪时间方面的不足,提出了一种在 BM3D 基础上优化了计算复杂度的算法。 首先使用 K-Medoids 算法进行图像聚类,在同质区域内进行块匹配,并设定自适应阈值τ,若目标块已经过三维变换处理,且与参考块之间的距离小于 τ,则使用处理过的目标块代替该参考块。实验结果表明,改进算法能够在保持原有的去噪效果的基础上有效提高算法效率,大幅度缩短去噪时间,平均能够节约 60s 的运算时间,效率约是原算法的 189. 1% 。
Abstract:
Due to the development of Internet technology,image,as an efficient carrier of information transmission,has a wide range ofapplications in various fields. However,the existence of noise in the propagation process leads to the image cannot be well expressed. Atpresent,BM3D algorithm is recognized as the best algorithm in the field of image denoising. However,the traditional BM3D algorithmhas some limitations due to its high computational complexity and long processing time. Therefore, according to its deficiency indenoising time,an algorithm based on BM3D is proposed to optimize computational complexity. Firstly,K-Medoids algorithm is usedfor image clustering,block matching is performed in homogeneous region,and the adaptive threshold?τ is set. If the target block has been transformed in 3D and the distance between the target block and the reference block is less than τ,the processed target block is used toreplace the reference block. The experimental results show that the improved algorithm can effectively improve the efficiency of thealgorithm nearly twice while maintaining the original denoising effect, greatly shortening the denoising time, saving 60 seconds ofoperation time on average,and the efficiency is about 189. 1% of the original algorithm.

相似文献/References:

[1]黄伟 王书文.一种基于图像边缘检测的全变分的去噪方法[J].计算机技术与发展,2009,(02):24.
 HUANG Wei,WANG Shu-wen.Total Variation Image Denoising Based on Image Edge Detection[J].,2009,(S2):24.
[2]周先国 李开宇.基于提升小波结合DCT变换的图像去噪研究[J].计算机技术与发展,2009,(02):62.
 ZHOU Xian-guo,LI Kai-yu.Image De - noising Research Based on Lifting Wavelet and Discrete Cosine Transform[J].,2009,(S2):62.
[3]邢丹俊 王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,(02):42.
 XING Dan-jun,WPNG Ji-cheng.Adaptive Threshold Based on Lifting Wavelet Transform for Image Denoising[J].,2008,(S2):42.
[4]于梅 殷兵 梁栋 王璐.基于边缘检测的Contourlet变换图像去噪[J].计算机技术与发展,2008,(06):104.
 YU Mei,YIN Bing,LIANG Dong,et al.Image Denoising with Contourlet Transform Based on Edge Detection[J].,2008,(S2):104.
[5]林德贵 何建农 郑玉燕.基于分水岭的提升小波图像去噪[J].计算机技术与发展,2008,(08):29.
 LIN De-gui,HE Jian-nong,ZHENG Yu-yan.Lifting Wavelet Image De- Noising Based on Watershed[J].,2008,(S2):29.
[6]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(S2):98.
[7]李瑶 董瑞 何韬 梁栋.一种基于Contourlet变换的图像去噪方法[J].计算机技术与发展,2007,(03):81.
 LI Yao,DONG Rui,HE Tao,et al.A Method for Image Denoising Based on Contourlet Transform[J].,2007,(S2):81.
[8]王国权 刘亮.FoE模型的训练方法研究[J].计算机技术与发展,2010,(12):86.
 WANG Guo-quan,LIU Liang.A Study on Training Methods of FoE Model[J].,2010,(S2):86.
[9]方洁.基于非抽样Contourlet变换的最佳软阈值图像去噪[J].计算机技术与发展,2011,(02):102.
 FANG Jie.Image Denoising Based on Nonsubsampled Contourlet Transform and Best Soft Threshold[J].,2011,(S2):102.
[10]柯丹丹 蔡光程 曹倩倩.基于形态学算子的各向异性扩散去噪方法[J].计算机技术与发展,2012,(04):81.
 KE Dan-dan,CAI Guang-cheng,CAO Qian-qian.An Anisotropic Diffusion Denoising Method Based on Morphological Operator[J].,2012,(S2):81.

更新日期/Last Update: 2022-10-10