[1]屈正庚,牛少清.一种改进的自适应加权中值滤波算法研究[J].计算机技术与发展,2018,28(12):86-90.[doi:10.3969/j. issn.1673-629X.2018.12.019]
 QU Zhenggeng,NIU Shaoqing.Research on an Improved Adaptive Weighted Median Filtering Algorithm[J].,2018,28(12):86-90.[doi:10.3969/j. issn.1673-629X.2018.12.019]
点击复制

一种改进的自适应加权中值滤波算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年12期
页码:
86-90
栏目:
智能、算法、系统工程
出版日期:
2018-12-10

文章信息/Info

Title:
Research on an Improved Adaptive Weighted Median Filtering Algorithm
文章编号:
1673-629X(2018)12-0086-05
作者:
屈正庚1牛少清2
1.商洛学院 数学与计算机应用学院,陕西 商洛 726000; 2.西安交大捷普网络科技有限公司,陕西 西安 710075
Author(s):
QU Zheng-geng1NIU Shao-qing2
1. School of Mathematics and Computer Application,Shangluo University,Shangluo 726000,China; 2. Xi’an Jiaotong University Jiepu Network Technology Co. ,Ltd. ,Xi’an 710075,China
关键词:
图像去噪 标准中值滤波 噪声检测 自适应加权中值滤波
Keywords:
image denoisingstandard median filteringnoise detectionadaptive weighted median filtering
分类号:
TP301.6
DOI:
10.3969/j. issn.1673-629X.2018.12.019
摘要:
图像在传输和处理过程中不可避免地存在边缘、细节信息破坏、垃圾噪声加载等问题,需要对输出图像进行过滤。对此,分析了几种典型的改进后的中值滤波算法,在此基础上提出了一种新的自适应加权中值滤波算法(WAMF)。该算法汲取了常见中值滤波算法的优缺点,通过噪声检测确定图像中的噪声点,根据窗口中噪声点的数量自适应调整滤波窗口的大小,像素点在滤波窗口中按照特定规律自适应分组,按照相似度值给各组像素点分配权重值,对检测到的噪声进行合理滤波。仿真结果表明,WAMF算法不仅可以有效去除噪声,而且较好地保存了图像细节,滤波性能优于常见中值滤波算法。
Abstract:
In the process of transmission and processing,there inevitably exist problems such as edge,detail information destruction,gar- bage noise loading and so on,so the output image needs to be filtered. In view of this,several typical improved median filtering algo- rithms are analyzed. On the basis,we propose a new adaptive weighted median filtering algorithm (WAMF). This algorithm captures the advantages and disadvantages of the common median filtering algorithm. The noise point in the image is determined by noise detection. The size of the filter window is adaptively adjusted according to the number of noise points in the window. Pixels are adaptively grouped in the filter window according to specific rules. According to the similarity value,weight values are assigned to each group of pixels,and the detected noise is properly filtered. The simulation shows that the WAMF algorithm not only can effectively remove the noise,but also preserves the details of the image better. Its filtering performance is better than the common median filtering algorithm.

相似文献/References:

[1]黄伟 王书文.一种基于图像边缘检测的全变分的去噪方法[J].计算机技术与发展,2009,(02):24.
 HUANG Wei,WANG Shu-wen.Total Variation Image Denoising Based on Image Edge Detection[J].,2009,(12):24.
[2]周先国 李开宇.基于提升小波结合DCT变换的图像去噪研究[J].计算机技术与发展,2009,(02):62.
 ZHOU Xian-guo,LI Kai-yu.Image De - noising Research Based on Lifting Wavelet and Discrete Cosine Transform[J].,2009,(12):62.
[3]邢丹俊 王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,(02):42.
 XING Dan-jun,WPNG Ji-cheng.Adaptive Threshold Based on Lifting Wavelet Transform for Image Denoising[J].,2008,(12):42.
[4]于梅 殷兵 梁栋 王璐.基于边缘检测的Contourlet变换图像去噪[J].计算机技术与发展,2008,(06):104.
 YU Mei,YIN Bing,LIANG Dong,et al.Image Denoising with Contourlet Transform Based on Edge Detection[J].,2008,(12):104.
[5]林德贵 何建农 郑玉燕.基于分水岭的提升小波图像去噪[J].计算机技术与发展,2008,(08):29.
 LIN De-gui,HE Jian-nong,ZHENG Yu-yan.Lifting Wavelet Image De- Noising Based on Watershed[J].,2008,(12):29.
[6]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(12):98.
[7]李瑶 董瑞 何韬 梁栋.一种基于Contourlet变换的图像去噪方法[J].计算机技术与发展,2007,(03):81.
 LI Yao,DONG Rui,HE Tao,et al.A Method for Image Denoising Based on Contourlet Transform[J].,2007,(12):81.
[8]王国权 刘亮.FoE模型的训练方法研究[J].计算机技术与发展,2010,(12):86.
 WANG Guo-quan,LIU Liang.A Study on Training Methods of FoE Model[J].,2010,(12):86.
[9]方洁.基于非抽样Contourlet变换的最佳软阈值图像去噪[J].计算机技术与发展,2011,(02):102.
 FANG Jie.Image Denoising Based on Nonsubsampled Contourlet Transform and Best Soft Threshold[J].,2011,(12):102.
[10]柯丹丹 蔡光程 曹倩倩.基于形态学算子的各向异性扩散去噪方法[J].计算机技术与发展,2012,(04):81.
 KE Dan-dan,CAI Guang-cheng,CAO Qian-qian.An Anisotropic Diffusion Denoising Method Based on Morphological Operator[J].,2012,(12):81.

更新日期/Last Update: 2018-12-10