[1]戴丹,张兴刚.基于权重自适应形态学的周期性噪声去除方法[J].计算机技术与发展,2018,28(05):9-12.[doi:10.3969/j.issn.1673-629X.2018.05.003]
 DAI Dan,ZHANG Xing-gang.A Periodic Noise Elimination Algorithm Based on Morphological Filtering with Auto-adapted Weights[J].,2018,28(05):9-12.[doi:10.3969/j.issn.1673-629X.2018.05.003]
点击复制

基于权重自适应形态学的周期性噪声去除方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年05期
页码:
9-12
栏目:
智能、算法、系统工程
出版日期:
2018-05-10

文章信息/Info

Title:
A Periodic Noise Elimination Algorithm Based on Morphological Filtering with Auto-adapted Weights
文章编号:
1673-629X(2018)05-0009-04
作者:
戴丹1 张兴刚 2
1.贵州大学 计算机科学与技术学院,贵州 贵阳 550025;
2.贵州大学 物理学院,贵州 贵阳 550025
Author(s):
DAI Dan1 ZHANG Xing-gang2
1.School of Computer Science and Information,Guizhou University,Guiyang 550025,China;
2.Institute of Physics,Guizhou University,Guiyang 550025,China
关键词:
周期性噪声图像去噪自适应权重形态滤波
Keywords:
periodic noiseimage denoisingauto-adapted weightsmorphological filter
分类号:
TN911.73;TP391
DOI:
10.3969/j.issn.1673-629X.2018.05.003
文献标志码:
A
摘要:
针对去除周期性噪声的同时容易造成图像的失真或降噪效果不理想的问题,提出了一种基于权重自适应形态学的周期性噪声去除方法。该方法使用不同尺度的结构元素对图像的周期性噪声进行串行处理,再将串行处理的结果并行处理,并通过自适应权值算法来构建复合级联滤波器,使用该滤波器滤除图像的周期性噪声。为了验证该算法的去噪性能,对周期性噪声及混合噪声进行了常用去噪算法的对比性实验。结果表明,视觉上,使用该算法去噪后的图像去噪效果较好且图像边缘和细节比较清晰;定量评价标准上,使用该算法去噪后的图像的 PSNR 和 SSIM 都较高。因此,该算法有效地抑制了图像中的周期性噪声,同时较好地保持了图像的几何特征,具有更好的鲁棒性。
Abstract:
Aiming at the problem that it is easy to cause the image distortion or poor noise reduction while eliminating the period noise,we propose a periodic denoising method based on morphological filtering with auto-adapted weights.In this method,periodic noise of images is processed serially by structural elements of different scales,then the results of serial processing are processed in parallel by constructing composite cascade filter using multi-structural elements.In order to verify the denoising performance of the proposed algorithm,some denoising algorithms are used to eliminate periodic noise and mixed noise.The experiments show that the de-noised image obtained by the proposed algorithm is less residual noise and clearer textures than other algorithms visually.At the same time,in the quantitative evaluation standard,the PSNR and SSIM of de-noised image obtained by the proposed algorithm are higher.So,it is robust,not only effectively restraining periodic and mixed noise,but also preferably maintaining image geometry characteristic.

相似文献/References:

[1]黄伟 王书文.一种基于图像边缘检测的全变分的去噪方法[J].计算机技术与发展,2009,(02):24.
 HUANG Wei,WANG Shu-wen.Total Variation Image Denoising Based on Image Edge Detection[J].,2009,(05):24.
[2]周先国 李开宇.基于提升小波结合DCT变换的图像去噪研究[J].计算机技术与发展,2009,(02):62.
 ZHOU Xian-guo,LI Kai-yu.Image De - noising Research Based on Lifting Wavelet and Discrete Cosine Transform[J].,2009,(05):62.
[3]邢丹俊 王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,(02):42.
 XING Dan-jun,WPNG Ji-cheng.Adaptive Threshold Based on Lifting Wavelet Transform for Image Denoising[J].,2008,(05):42.
[4]于梅 殷兵 梁栋 王璐.基于边缘检测的Contourlet变换图像去噪[J].计算机技术与发展,2008,(06):104.
 YU Mei,YIN Bing,LIANG Dong,et al.Image Denoising with Contourlet Transform Based on Edge Detection[J].,2008,(05):104.
[5]林德贵 何建农 郑玉燕.基于分水岭的提升小波图像去噪[J].计算机技术与发展,2008,(08):29.
 LIN De-gui,HE Jian-nong,ZHENG Yu-yan.Lifting Wavelet Image De- Noising Based on Watershed[J].,2008,(05):29.
[6]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(05):98.
[7]李瑶 董瑞 何韬 梁栋.一种基于Contourlet变换的图像去噪方法[J].计算机技术与发展,2007,(03):81.
 LI Yao,DONG Rui,HE Tao,et al.A Method for Image Denoising Based on Contourlet Transform[J].,2007,(05):81.
[8]王国权 刘亮.FoE模型的训练方法研究[J].计算机技术与发展,2010,(12):86.
 WANG Guo-quan,LIU Liang.A Study on Training Methods of FoE Model[J].,2010,(05):86.
[9]方洁.基于非抽样Contourlet变换的最佳软阈值图像去噪[J].计算机技术与发展,2011,(02):102.
 FANG Jie.Image Denoising Based on Nonsubsampled Contourlet Transform and Best Soft Threshold[J].,2011,(05):102.
[10]柯丹丹 蔡光程 曹倩倩.基于形态学算子的各向异性扩散去噪方法[J].计算机技术与发展,2012,(04):81.
 KE Dan-dan,CAI Guang-cheng,CAO Qian-qian.An Anisotropic Diffusion Denoising Method Based on Morphological Operator[J].,2012,(05):81.

更新日期/Last Update: 2018-06-26