[1]张 锐,王义武,朱啸龙,等.基于UPGMA 的优化初始中心 K-means 算法研究[J].计算机技术与发展,2018,28(02):50-53.[doi:10.3969/j.issn.1673-629X.2018.02.012]
 ZHANG Rui,WANG Yiwu,ZHU Xiaolong,et al.Research on K-means Algorithm for Optimizing Initial Center Based on UPGMA[J].,2018,28(02):50-53.[doi:10.3969/j.issn.1673-629X.2018.02.012]
点击复制

基于UPGMA 的优化初始中心 K-means 算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年02期
页码:
50-53
栏目:
智能、算法、系统工程
出版日期:
2018-02-10

文章信息/Info

Title:
Research on K-means Algorithm for Optimizing Initial Center Based on UPGMA
文章编号:
1673-629X(2018)02-0050-04
作者:
张 锐王义武朱啸龙殷 俊韩 晨杨余旺
南京理工大学 计算机科学与工程学院,江苏 南京 210000
Author(s):
ZHANG RuiWANG Yi-wuZHU Xiao-longYIN JunHAN ChenYANG Yu-wang
School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210000,China
关键词:
聚类初始中心不加权算术平均组对法最大最小距离算法 K -means 算法
Keywords:
clusteringinitial centersUPGMAmaximum and minimum distance algorithm K -means algorithm
分类号:
TP301.6
DOI:
10.3969/j.issn.1673-629X.2018.02.012
文献标志码:
A
摘要:
为了弥补传统 K -means 算法聚类效果严重依赖于初始聚类中心这一不足,提出了 OICC K -means 算法。将不加权算术平均组对法(UPGMA)进行改进,通过该算法将密集区域的数据合并得到可以反映数据分布的若干数据点,再由最大最小距离算法从中选出彼此相距较远的点,作为传统 K -means 算法的初始聚类中心,从而使 K -means 算法有一个可以反映数据分布特征的输入。在典型数据集上进行的实验发现,相较于传统 K -means 算法,OICC K -means 算法拥有更强的聚类能力,在准确率、召回率和 F- 测量值方面均有明显提高。在 OICC K -means 算法的前两个阶段(即 UPGMA 算法和最大最小距离算法)产生了较理想的初始聚类中心,这些中心点选自于数据密集的区域,因此避免了噪声数据、边缘数据带来的不良影响,使得 K -means 算法没有陷入局部最优解而达到了整体良好的聚类效果,同时聚类中心的个数在算法中自动确定而不需要手动设置。
Abstract:
In order to compensate for deficiency that the traditional K -means algorithm depends heavily on initial clustering centers in clustering effect,we propose the OICC K -means algorithm.By improved UPGMA,the data in dense area is combined to obtain a number of data points that can reflect the distribution of the data,from which the distant one from each other is chosen by the maximum and minimum distance algorithm as the initial clustering center of traditional K -means algorithm,so that it has an input that reflects the characteristics of the
data distribution.It can be found in experiment on the typical data set that OICC K -means algorithm,with a stronger clustering,compared with the traditional K -means algorithm,is improved in accuracy,recall and F-measure obviously.The first two stages of the OICC K -means algorithm (the UPGMA and the maximum and minimum distance) produces ideal initial clustering centers which are selected from the data -intensive regions,thus avoiding the adverse effects caused by noise data and edge data.Therefore,the K -means algorithm does not fall into the local optimal solution and achieves the overall good clustering effect,and the number of clustering centers is automatically determined without manual setting.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(02):36.
[2]张甜 罗眉 孟晓红 赵宗涛.一种基于状态特征的航天发射故障诊断技术[J].计算机技术与发展,2010,(01):93.
 ZHANG Tian,LUO Mei,MENG Xiao-hong,et al.A Technology in Fault Diagnosis of Spaceflight Launch Based on State Character[J].,2010,(02):93.
[3]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(02):84.
[4]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(02):179.
[5]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(02):109.
[6]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(02):171.
[7]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
 YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(02):111.
[8]刘淑英 程国建 彭方.人工神经生长细胞结构网络在医疗诊断的应用[J].计算机技术与发展,2009,(05):231.
 LIU Shu-ying,CHENG Guo-jian,PENG Fang.Applications of Growing Cell Structures of Artificial Neural Network for Medical Diagnosis[J].,2009,(02):231.
[9]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(02):58.
[10]王园园 倪志伟 赵裕啸 伍章俊.基于决策树的模糊聚类评价算法及其应用[J].计算机技术与发展,2009,(09):232.
 WANG Yuan-yuan,NI Zhi-wei,ZHAO Yu-xiao,et al.Fuzzy Clustering Evaluation Algorithm Based on Decision Tree and Application[J].,2009,(02):232.
[11]吴涛[] 尚丽 陈黎伟.一种基于聚类的交叉覆盖算法[J].计算机技术与发展,2008,(11):113.
 WU Tao,SHANG Li,CHEN Li-wei.A Kind of Alternative Covering Algorithm Based on Clustering[J].,2008,(02):113.

更新日期/Last Update: 2018-03-26