[1]邵明来,秦亮曦. 集粒度计算、蚁群算法与模糊思想的聚类算法[J].计算机技术与发展,2015,25(02):78-81.
 SHAO Ming-lai,QIN Liang-xi. Clustering Algorithm Combined Granular Computing,Ant Colony Algorithm and Fuzzy Idea[J].,2015,25(02):78-81.
点击复制

 集粒度计算、蚁群算法与模糊思想的聚类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年02期
页码:
78-81
栏目:
智能、算法、系统工程
出版日期:
2015-02-10

文章信息/Info

Title:
 Clustering Algorithm Combined Granular Computing,Ant Colony Algorithm and Fuzzy Idea
文章编号:
1673-629X(2015)02-0078-04
作者:
 邵明来秦亮曦
 广西大学 计算机与电子信息学院
Author(s):
 SHAO Ming-laiQIN Liang-xi
关键词:
 聚类模糊C均值算法粒度计算蚁群算法
Keywords:
 clusteringfuzzy C-means algorithmgranular computingant colony algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
 模糊C均值聚类算法在开始时采用随机的方式选取初始聚类中心,该方式使得FCM算法对初始聚类中心的选取极为敏感,且在局部范围内较易得到最优解,但是在全局范围内的效果较差;蚁群聚类算法根据先验知识随意设定蚂蚁拾起或放下数据对象的概率,缺乏严密的数学依据。针对FCM算法和蚁群算法的不足,文中将模糊粒度计算的思想推广应用到蚁群聚类算法中,并将改进后的蚁群聚类算法与模糊C均值聚类算法相结合,提出了一种将粒度计算、蚁群算法与模糊C均值算法思想相结合的聚类算法。经过实验验证,改进后的算法较原算法具有更好的聚类效果。
Abstract:
 Fuzzy C-means clustering algorithm uses a random manner to select the cluster centers at the beginning,which makes fuzzy C-means clustering algorithm extremely sensitive to the selected initial cluster centers,and it is more easily to get the optimal solution in the local area,but the effect is not very well in the global scope. Ant colony clustering algorithm arbitrarily sets the probability of ants picking up or down the data object according to the priori knowledge,lack of rigorous mathematical basis. Focusing on the shortage of FCM algorithm and ant colony clustering algorithm,in this paper,apply the granular computing to the ant colony clustering algorithm,and combined the improved ant colony clustering algorithm and fuzzy C-means clustering algorithm,propose an improved fuzzy C-means clustering algorithm. Verified by experiments,the improved algorithm is better than the original algorithm on clustering effect.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(02):36.
[2]张甜 罗眉 孟晓红 赵宗涛.一种基于状态特征的航天发射故障诊断技术[J].计算机技术与发展,2010,(01):93.
 ZHANG Tian,LUO Mei,MENG Xiao-hong,et al.A Technology in Fault Diagnosis of Spaceflight Launch Based on State Character[J].,2010,(02):93.
[3]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(02):84.
[4]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(02):179.
[5]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(02):109.
[6]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(02):171.
[7]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
 YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(02):111.
[8]刘淑英 程国建 彭方.人工神经生长细胞结构网络在医疗诊断的应用[J].计算机技术与发展,2009,(05):231.
 LIU Shu-ying,CHENG Guo-jian,PENG Fang.Applications of Growing Cell Structures of Artificial Neural Network for Medical Diagnosis[J].,2009,(02):231.
[9]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(02):58.
[10]王园园 倪志伟 赵裕啸 伍章俊.基于决策树的模糊聚类评价算法及其应用[J].计算机技术与发展,2009,(09):232.
 WANG Yuan-yuan,NI Zhi-wei,ZHAO Yu-xiao,et al.Fuzzy Clustering Evaluation Algorithm Based on Decision Tree and Application[J].,2009,(02):232.
[11]李荟,谢强,丁秋林. 一种基于情景的协同过滤推荐算法[J].计算机技术与发展,2014,24(10):42.
 LI Hui,XIEQiang,DING Qiu-lin. A Collaborative Filtering Recommendation Algorithm Based on Scenario[J].,2014,24(02):42.
[12]吴楠,秦锋,姜太平. 一种基于用户情境聚类的个性化推荐算法[J].计算机技术与发展,2014,24(10):106.
 WU Nan,QIN Feng,JIANG Tai-ping. A Personalized Recommendation Algorithm Based on User Context Clustering[J].,2014,24(02):106.
[13]高蕾[],曹建忠[]. 基于可穿戴传感器的行为识别随机逼近模型[J].计算机技术与发展,2014,24(12):83.
 GAO Lei[],CAO Jian-zhong[]. Activity Recognition Using Stochastic Approximation Model Based on Wearable Sensor[J].,2014,24(02):83.
[14]刘华春,侯向宁,杨忠. 基于聚类与关联的入侵检测系统研究设计[J].计算机技术与发展,2015,25(07):133.
 LIU Hua-chun,HOU Xiang-ning,YANG Zhong. Research and Design of Intrusion Detection System Based on Association and Clustering[J].,2015,25(02):133.
[15]王玉雷,李玲娟. 一种密度和划分结合的聚类算法[J].计算机技术与发展,2015,25(09):53.
 WANG Yu-le,LI Ling-juan. A Clustering Algorithm of Combination of Density and Division[J].,2015,25(02):53.
[16]王伟,李玲娟. 一种基于聚类的社团划分算法[J].计算机技术与发展,2015,25(10):119.
 WANG Wei,LI Ling-juan. A Clustering-based Community Division Algorithm[J].,2015,25(02):119.
[17]余琨,荆晓远,吴飞,等. 基于竞争聚集的K-SVD字典学习算法[J].计算机技术与发展,2015,25(11):44.
 YU Kun,JING Xiao-yuan,WU Fei,et al. K-SVD Dictionary Learning Algorithm Based on Competitive Agglomeration[J].,2015,25(02):44.
[18]李振,贾瑞玉. 一种改进的K-means蚁群聚类算法[J].计算机技术与发展,2015,25(12):28.
 LI Zhen,JIA Rui-yu. An Improved K-means Ant Colony Clustering Algorithm[J].,2015,25(02):28.
[19]严静静,张腾飞. 基于自适应的粗糙C-均值聚类算法[J].计算机技术与发展,2016,26(03):67.
 YAN Jing-jing,ZHANG Teng-fei. Rough C-means Clustering Algorithm Based on Self-adaption[J].,2016,26(02):67.
[20]郭涵阳,高曼如,沈良忠. Moodle平台师生访问行为日志统计与挖掘研究[J].计算机技术与发展,2016,26(11):168.
 GUO Han-yang,GAO Man-ru,SHEN Liang-zhong. Research on Statistics and Mining of Log Data about Visiting Behavior for Both Teachers and Students from Moodle[J].,2016,26(02):168.

更新日期/Last Update: 2015-04-28