[1]戴丹.基于改进分水岭算法的粘连颗粒图像分割[J].计算机技术与发展,2013,(03):19-22.
 DAI Dan.Image Segmentation of Adhering Particle Based on Improved Watershed Algorithm[J].,2013,(03):19-22.
点击复制

基于改进分水岭算法的粘连颗粒图像分割()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年03期
页码:
19-22
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Image Segmentation of Adhering Particle Based on Improved Watershed Algorithm
文章编号:
1673-629X(2013)03-0019-04
作者:
戴丹
贵州大学 计算机科学与信息学院
Author(s):
DAI Dan
关键词:
分水岭算法图像分割形态学重建距离变换
Keywords:
watershed algorithmimage segmentationmorphology reconstructiondistance transformation
文献标志码:
A
摘要:
对颗粒物质实验中粘连颗粒的分割,传统分水岭算法容易产生过分割现象.为解决该问题,设计了一种有效的改进分水岭算法.该算法先采用数学形态学重建滤波平滑图像噪声及内部小细节,然后使用Otsu方法对图像进行阈值分割,并对得到的二值图像作欧氏距离变换,将像素点位置信息转换为灰度信息,最后对距离图利用分水岭算法得到最终分割图像.实验结果表明,该算法获得了较满意的分割效果,解决了目标粘连现象对后续分析、测量产生干扰的问题
Abstract:
During the segmentation of adhering particle in the experiments,traditional watershed algorithm has over-segmentation prob-lem. To solve the problem,an effective and improved watershed algorithm was proposed. Firstly,it used morphological reconstruction fil-tering to smooth the image,and then it used Otsu to do the image threshold segmentation and calculated the binary image’s Euclidean dis-tance. Finally,the final segmentation image was obtained by means of the watershed image segmentation. The results in the experiments show that the algorithm gets satisfactory segmentation effect and it is successful to solve the interference problems of adhering disk

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(03):36.
[2]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(03):101.
[3]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(03):128.
[4]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(03):121.
[5]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(03):105.
[6]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(03):76.
[7]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(03):121.
[8]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(03):69.
[9]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(03):104.
[10]赵勇 陈立潮 张英俊 李鑫环.基于模糊熵的改进型PCNN图像分割方法[J].计算机技术与发展,2009,(10):141.
 ZHAO Yong,CHEN Li-chao,ZHANG Ying-jun,et al.A New Method of an Improved PCNN Model for Image Segmentation Based on Fuzzy Entropy[J].,2009,(03):141.
[11]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(03):100.
[12]盛仲飙.基于对比度增强的分水岭分割算法[J].计算机技术与发展,2012,(12):90.
 SHENG Zhong-biao.Watershed Segmentation Algorithm Based on Contrast Enhancement[J].,2012,(03):90.
[13]蔡子文,费向东.基于标记的数学形态学滤波分水岭算法[J].计算机技术与发展,2013,(03):38.
 CAI Zi-wen,FEI Xiang-dong.Mathematical-morphological Watershed Algorithm Based on Marking[J].,2013,(03):38.

更新日期/Last Update: 1900-01-01