[1]张群会 李贵敏 蔺宝华 韩波.基于最大熵-方差模型的图像分割方法[J].计算机技术与发展,2011,(06):43-46.
 ZHANG Qun-hui,LI Gui-min,LIN Bao-hua,et al.Threshold Image Segmentation Based on Maximum Entropy-Variance Model[J].,2011,(06):43-46.
点击复制

基于最大熵-方差模型的图像分割方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年06期
页码:
43-46
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Threshold Image Segmentation Based on Maximum Entropy-Variance Model
文章编号:
1673-629X(2011)06-0043-04
作者:
张群会1 李贵敏1 蔺宝华2 韩波2
[1]西安科技大学计算机学院[2]西安科技大学理学院
Author(s):
ZHANG Qun-huiLI Gui-minLIN Bao-huaHAN Bo
[1]College of Computer,Xi′an University of Science and Technology[2]College of Science,Xi′an University of Science and Technology
关键词:
图像分割最大类间方差最大熵阈值
Keywords:
image segmentation maximum variance between cluster maximum entropy threshold
分类号:
TN911.73
文献标志码:
A
摘要:
针对当图像中目标与背景的面积相差很大时,最大类间方差方法的分割性能迅速下降的问题,研究了信息熵和方差的关系。认为信息熵和方差都被用作不确定性的度量,两者之间定会存在一定的科学关系,因此将最大熵和最大类间方差结合起来建立数学模型,提出基于最大熵-方差模型的图像分割方法,并引入类内方差对分割进行评价来选取参数调整算法的分割性能,更充分地利用了图像的灰度信息。通过实验证明该方法优于最大熵方法和最大类间方差方法,具有较强的稳定性,提高了图像分割精度
Abstract:
When the area of the target and the background for an image are more different,the performance to segment an image by the maximum between-class variance method declines rapidly.So have researched the relation between information entropy and variance,think that both information entropy and variance are used as a measure of uncertainty,there must be certain scientific relations between the two.Has constructed the mathematical model between maximum entropy and maximum variance,a new image segmentation method based on entropy-variance model is proposed.Adjust the performance to segment an image through evaluating the variance within the class,make better use of the gray information of an image.Numerous experiments show that the method is better than the method of maximum entropy and the maximum between-class variance method,the method is very stable and enhance the accuracy of image segmentation

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(06):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(06):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(06):101.
[4]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(06):128.
[5]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(06):121.
[6]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(06):105.
[7]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(06):76.
[8]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(06):121.
[9]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(06):69.
[10]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(06):104.

备注/Memo

备注/Memo:
科技部科技型中小企业技术创新基金(08C26216111454)张群会(1956-),男,教授,研究方向为科学计算可视化、图形图像处理、模式识别
更新日期/Last Update: 1900-01-01