[1]刘念涛 刘希玉.基于改进的启发式蚁群算法的聚类问题的研究[J].计算机技术与发展,2007,(08):37-39.
 LIU Nian-tao,LIU Xi-yu.Research on Clustering Problem Based on Improved Heuristic Ant Colony Algorithm[J].,2007,(08):37-39.
点击复制

基于改进的启发式蚁群算法的聚类问题的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年08期
页码:
37-39
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Clustering Problem Based on Improved Heuristic Ant Colony Algorithm
文章编号:
1673-629X(2007)08-0037-03
作者:
刘念涛 刘希玉
山东师范大学信息科学与工程学院
Author(s):
LIU Nian-tao LIU Xi-yu
College of Information and Engineering, Shandong Normal University
关键词:
蚁群算法聚类蚁群聚类算法记忆银行
Keywords:
ant colony algorithm clustering ant - clustering algorithm memory bank
分类号:
TP301.6
文献标志码:
A
摘要:
蚁群算法是优化领域中新出现的一种仿生进化算法,广泛应用于求解复杂组合优化问题,并已在通信网络、机器人等许多应用领域得以具体应用。聚类问题作为一种无监督的学习,能根据数据间的相似程度自动地进行分类。基于蚁群算法的聚类算法已经在当前的数据挖掘研究中得到应用。文中针对早期蚁群聚类算法的缺点,提出一种改进的启发式蚁群聚类算法(IHAC),将蚁群在多维空间中移动的启发式知识存储在称之为“记忆银行”的设备当中,来指导蚁群后边的移动行为,降低蚁群移动的随意性,避免产生未分配的数据对象。并用一些数据做了一些实验,结果证明
Abstract:
Ant colony algorithm is a novel category of bionic algorithm for optimization problems which has various applications to different COPS, e g. communication networks,robotics. As an unsupervised learning technique, dustering is a division of data into groups of similar objects. The ant- based clustering algorithm has currently applications in the data mining community.Based the disadvantage of the classical algorithm, this paper presents an improved heuristic ant- clustering algorithm(IHAC) .A device of memory bank is proposed, which can bring forth heuristic guiding ant to move in the bi - dimension space. The device lowers the randomness of ant' s moving and avoids the producing of un- assigned data object. Results on real data sets are given to show that lilAC has superiority in rnisclassification error rate and runtime over the classical algorithm

相似文献/References:

[1]段军,张清磊.蚁群算法在LEACH路由协议中的应用[J].计算机技术与发展,2014,24(01):65.
 DUAN Jun,ZHANG Qing-lei.Application of Ant Colony Algorithm Based on LEACH Routing Protocol[J].,2014,24(08):65.
[2]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(08):36.
[3]张甜 罗眉 孟晓红 赵宗涛.一种基于状态特征的航天发射故障诊断技术[J].计算机技术与发展,2010,(01):93.
 ZHANG Tian,LUO Mei,MENG Xiao-hong,et al.A Technology in Fault Diagnosis of Spaceflight Launch Based on State Character[J].,2010,(08):93.
[4]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(08):84.
[5]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(08):128.
[6]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(08):9.
[7]宋世杰 刘高峰 周忠友 卢小亮.基于改进蚁群算法求解最短路径和TSP问题[J].计算机技术与发展,2010,(04):144.
 SONG Shi-jie,LIU Gao-feng,ZHOU Zhong-you,et al.An Improved Ant Colony Algorithm Solving the Shortest Path and TSP Problem[J].,2010,(08):144.
[8]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(08):179.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(08):109.
[10]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(08):171.
[11]段凤玲 李龙澍 曹文婷.具有多态特征和聚类处理的蚁群算法[J].计算机技术与发展,2009,(12):77.
 DUAN Feng-ling,LI Long-shu,CAO Wen-ting.Ant Colony Algorithm with Polymorphism and Clustering Processing[J].,2009,(08):77.
[12]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(08):73.
[13]邵明来,秦亮曦. 集粒度计算、蚁群算法与模糊思想的聚类算法[J].计算机技术与发展,2015,25(02):78.
 SHAO Ming-lai,QIN Liang-xi. Clustering Algorithm Combined Granular Computing,Ant Colony Algorithm and Fuzzy Idea[J].,2015,25(08):78.

备注/Memo

备注/Memo:
山东自然科学基金重大项目(Z2004G01);山东省教育厅计划项目(J05G01);“泰山学者”建设工程专项经费资助刘念涛(1982-),男,山东济南人,硕士研究生,研究方向为群体智能优化、数据挖掘;刘希玉,博士,教授,博士生导师,研究方向为数据挖掘、人工神经网络、群体智能
更新日期/Last Update: 1900-01-01