[1]李杰 贾瑞玉 张璐璐.一个改进的基于DBSCAN的空间聚类算法研究[J].计算机技术与发展,2007,(01):114-116.
 LI Jie,JIA Rui-yu,ZHANG Lu-lu.Research on Improving Spatial Clustering Algorithm Based on DBSCAN[J].,2007,(01):114-116.
点击复制

一个改进的基于DBSCAN的空间聚类算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年01期
页码:
114-116
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Improving Spatial Clustering Algorithm Based on DBSCAN
文章编号:
1673-629X(2007)01-0114-03
作者:
李杰 贾瑞玉 张璐璐
安徽大学计算机科学与技术学院
Author(s):
LI JieJIA Rui-yu ZHANG Lu-lu
School of Computer Science and Technology, Anhui University
关键词:
空间数据挖掘聚类密度非空间属性
Keywords:
spatial data mining elustering density non - spatial attribute
分类号:
TP301.6
文献标志码:
A
摘要:
DBSCAN是一个基于密度的聚类算法。该算法将具有足够高密度的区域划分为簇,并可以在带有“噪声”的空间数据库中发现任意形状的聚类。但DBSCAN算法没有考虑非空间属性,且DBSCAN算法需扫描空间数据库中每个点的ε-邻域来寻找聚类,这使得DBSCAN算法的应用受到了一定的局限。文中提出了一种基于DBSCAN的算法,可以处理非空间属性,同时又可以加快聚类的速度
Abstract:
DBSCAN is a spatial clustering algorithm based on density. It can handle spatial data and spot any- shape clusters in a noised spatial database by dividing them into clusters with high enough density. But DBSCAN does not take non - spatial properties into account and its strategy of scanning every points' ε - neighborhood to find clusters is very time - consuming,which makes it hard to apply. Proposes an improved DBSCAN algorithm which can handle non - spatial properties and greatly accelerate the speed of clustering

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(01):36.
[2]张甜 罗眉 孟晓红 赵宗涛.一种基于状态特征的航天发射故障诊断技术[J].计算机技术与发展,2010,(01):93.
 ZHANG Tian,LUO Mei,MENG Xiao-hong,et al.A Technology in Fault Diagnosis of Spaceflight Launch Based on State Character[J].,2010,(01):93.
[3]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(01):84.
[4]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(01):179.
[5]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(01):109.
[6]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(01):171.
[7]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
 YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(01):111.
[8]刘淑英 程国建 彭方.人工神经生长细胞结构网络在医疗诊断的应用[J].计算机技术与发展,2009,(05):231.
 LIU Shu-ying,CHENG Guo-jian,PENG Fang.Applications of Growing Cell Structures of Artificial Neural Network for Medical Diagnosis[J].,2009,(01):231.
[9]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(01):58.
[10]王园园 倪志伟 赵裕啸 伍章俊.基于决策树的模糊聚类评价算法及其应用[J].计算机技术与发展,2009,(09):232.
 WANG Yuan-yuan,NI Zhi-wei,ZHAO Yu-xiao,et al.Fuzzy Clustering Evaluation Algorithm Based on Decision Tree and Application[J].,2009,(01):232.
[11]聂跃光 陈立潮 陈湖.基于密度的空间聚类算法研究[J].计算机技术与发展,2008,(08):91.
 NIE Yue-guang,CHEN Li-chao,CHEN Hu.Research of Spatial Clustering Algorithms Based on Density[J].,2008,(01):91.
[12]李晓峰,杨春山,丁树春[].基于信息熵的城市隧道实时交通事件检测聚类[J].计算机技术与发展,2013,(10):212.
 LI Xiao-feng[],YANG Chun-shan[],DING Shu-chun[].Entropy-based City Tunnel Real-time Traffic Incident Detection Clustering[J].,2013,(01):212.

备注/Memo

备注/Memo:
李杰(1979-),男,安徽合肥人,硕士研究生,主要研究方向为数据挖掘、人工智能;贾瑞玉,副教授,硕导,主要研究方向为机器学习、图形学、可视化数据挖掘
更新日期/Last Update: 1900-01-01