[1]梁循.通讯行业客户行为的关联挖掘[J].计算机技术与发展,2006,(03):1-4.
 LIANG Xun.Mining Association Rules in Customer Behavior in Telecommunication[J].,2006,(03):1-4.
点击复制

通讯行业客户行为的关联挖掘()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年03期
页码:
1-4
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Mining Association Rules in Customer Behavior in Telecommunication
文章编号:
1005-3751(2006)03-0001-04
作者:
梁循12
[1]北京大学计算机科学与技术研究所[2]斯坦福大学管理科学系
Author(s):
LIANG Xun
[1] institute of Computer Science and Technology, Peking University[2]Department of Management Science, Stanford University
关键词:
关联挖掘聚类连通子图客户行为
Keywords:
miningsoeiation rules clustering connected subgraph customer behavior
分类号:
TP391
文献标志码:
A
摘要:
提出了一种基于关联规则挖掘的聚类方法。首先,通讯行业客户行为的原始数据经过数据预处理转变为地区间的“距离”数据。其次,由于地区是“漂浮”的,不再是“刚体”,而是一种抽象的“柔性”距离,使用关联规则进行挖掘成为一种好的选择。文中对通讯行业客户行为进行了基于关联规则的建模,较好地嵌入了关联规则的框架。在数据实验后,提炼出了知识,发现东南亚客户聚成一类,以此为模式,得出了“在南美发展业务是错误的”的结论,该结论在挖掘之前是没有意料到的。实践上,该结论阻止了相应公司的南美发展计划,为公司度过后来的硅谷经济萧条时期省下了上百万美元的“战略储备”资金
Abstract:
Presents a method of clustering based on mining association rules. First, the raw data for the customer behavior in telecommuni- cation are transformed into the "distances" between the areas. Second, since the areas are "floating", as opposed to "rigid", the application of the association rule technique to the "flexible" distances turns out to be an adequate option. The customer behavior in telecommunication is calibrated into the framework of association rules. Experiments hint us the pattern by grouping the customers into a cluster. Based on the pattern, an analysis results in a conclusion that "it is a wrung decision to develop the business in South America", which is unexpected before data mining. In practice, the conclusion was applied and prevented the plan of South America, saving some one million US dollars of the strategic fund for living through the years of stagnant economy in Silicon Valley for the corporation

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(03):36.
[2]张甜 罗眉 孟晓红 赵宗涛.一种基于状态特征的航天发射故障诊断技术[J].计算机技术与发展,2010,(01):93.
 ZHANG Tian,LUO Mei,MENG Xiao-hong,et al.A Technology in Fault Diagnosis of Spaceflight Launch Based on State Character[J].,2010,(03):93.
[3]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(03):84.
[4]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(03):179.
[5]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(03):109.
[6]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(03):171.
[7]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
 YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(03):111.
[8]刘淑英 程国建 彭方.人工神经生长细胞结构网络在医疗诊断的应用[J].计算机技术与发展,2009,(05):231.
 LIU Shu-ying,CHENG Guo-jian,PENG Fang.Applications of Growing Cell Structures of Artificial Neural Network for Medical Diagnosis[J].,2009,(03):231.
[9]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(03):58.
[10]王园园 倪志伟 赵裕啸 伍章俊.基于决策树的模糊聚类评价算法及其应用[J].计算机技术与发展,2009,(09):232.
 WANG Yuan-yuan,NI Zhi-wei,ZHAO Yu-xiao,et al.Fuzzy Clustering Evaluation Algorithm Based on Decision Tree and Application[J].,2009,(03):232.

备注/Memo

备注/Memo:
留学回国启动基金资助项目(4131522);国家自然科学基金资助项目(70571003)梁循(1965-),男,北京人,博士,博士后,MBA副教授,研究方向为电子金融、数据挖掘
更新日期/Last Update: 1900-01-01