[1]耿 文,孙 涵.一种 Anchor Free 的无人机检测方法[J].计算机技术与发展,2021,31(01):54-60.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 010]
 GENG Wen,SUN Han.An Anchor Free Method for Detecting Drones[J].,2021,31(01):54-60.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 010]
点击复制

一种 Anchor Free 的无人机检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年01期
页码:
54-60
栏目:
图形与图像
出版日期:
2021-01-10

文章信息/Info

Title:
An Anchor Free Method for Detecting Drones
文章编号:
1673-629X(2021)01-0054-07
作者:
耿 文12孙 涵12
1. 南京航空航天大学 计算机科学与技术学院/ 人工智能学院,江苏 南京 211106;?
2. 南京航空航天大学 模式分析与机器智能工信部重点实验室,江苏 南京 211106
Author(s):
GENG Wen12SUN Han12
1. School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China; 2. MIIT Key Laboratory of Pattern Analysis and Machine Intelligence,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
关键词:
目标检测anchor free无人机检测小目标检测逐像素预测HRNet
Keywords:
object detectionanchor freedrone detectionsmall object detectionper-pixel detectionHRNet
分类号:
TP391. 41
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 01. 010
摘要:
目前几乎所有最先进的目标检测方法都依赖于预先定义的 anchor,但是由于 anchor 的存在,网络会增加与 anchor 相关的计算开销,而且在现实世界中,目标尺度多种多样,比如地对空拍摄的无人机目标,预先定义的 anchor 不可能穷举所有的无人机尺度。 因此,该文抛弃预先定义的 anchor,采用 anchor free 的方法来检测无人机。 该 anchor free 方法以目标中心区域的像素为训练样本来逐像素预测边界框的偏移量。 针对地对空拍摄的无人机目标大部分都是小尺度的情况,采用高分辨率网络 HRNet 作为主干网络来提取小目标细粒度的特征,从而提高小目标检测的精度。 相对于基于 anchor 的目标检测方法,该网络框架简单、灵活,并且可以自适应地预测无人机目标的边界框。 在自己设计的无人机数据集上,该方法获得了更高的召回率和精确率。
Abstract:
At present,almost all the most advanced object detection methods rely on a pre-defined anchor. However, due to the existence of anchor, the network will increase computation and memory footprint,and object scales are varied in the real world,anchor cannot exhaustive all drone scales.Therefore we abandon a pre-defined anchor and adopt anchor free method to detect drones,which uses? the pixels in the center area of the object as training samples to predict the offset of the bounding box. At the same time,in order to solve the problem that most drones are small,a high-resolution network HRNet is used as the backbone network to extract fine-grained features of small objects,thereby improving the accuracy of small object detection. Compared with the anchor-based object detectors, this network framework is simple,flexible,and can adaptively predict the bounding box of the drone. The proposed anchor free method achieves higher precision and recall on the drone dataset designed by ourselves.

相似文献/References:

[1]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
 LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(01):29.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(01):179.
[3]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(01):60.
[4]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(01):181.
[5]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(01):37.
[6]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100.
 LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(01):100.
[7]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(01):221.
[8]章文洁[][],黄旻[],张桂峰[]. 滤光片多光谱成像中运动目标场景误配准修正[J].计算机技术与发展,2016,26(01):18.
 ZHANG Wen-jie[][],HUANG Min[],ZHANG Gui-feng[]. Misregistration Correction for Moving Object Scene in Filter-type Multispectral Imaging[J].,2016,26(01):18.
[9]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(01):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[10]张夏清,茅耀斌. 一种改进的ViBe背景提取算法[J].计算机技术与发展,2016,26(07):36.
 ZHANG Xia-qing,MAO Yao-bin. An Improved ViBe Background Generation Method[J].,2016,26(01):36.

更新日期/Last Update: 2020-01-10