[1]樊海玮,史 双,蔺 琪,等.复杂背景下 SAR 图像船舶目标检测算法研究[J].计算机技术与发展,2021,31(10):49-55.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 009]
 FAN Hai-wei,SHI Shuang,LIN Qi,et al.Research on Ship Target Detection Algorithm in Complex Background SAR Image[J].,2021,31(10):49-55.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 009]
点击复制

复杂背景下 SAR 图像船舶目标检测算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年10期
页码:
49-55
栏目:
图形与图像
出版日期:
2021-10-10

文章信息/Info

Title:
Research on Ship Target Detection Algorithm in Complex Background SAR Image
文章编号:
1673-629X(2021)10-0049-07
作者:
樊海玮史 双蔺 琪孙 欢秦佳杰
长安大学 信息工程学院,陕西 西安 710064
Author(s):
FAN Hai-weiSHI ShuangLIN QiSUN HuanQIN Jia-jie
School of Information Engineering,Chang’an University,Xi’an 710064,China
关键词:
深度学习目标检测SAR 图像双注意力机制特征融合
Keywords:
deep learningtarget detectionSAR imagesdual attention mechanismfeature fusion
分类号:
TP312
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 10. 009
摘要:
针对复杂背景 SAR 图像船舶目标检测易受地物干扰影响,导致模型检测率低的问题,提出将结合通道和空间的双注意力机制 CBAM 引入目标检测网络;将膨胀卷积和 concat 特征融合技术应用于目标检测网络中提升模型对小尺寸目标的鲁棒性;为进一步提高模型的检测速度,使用轻量级 MobileNet 作为基础特征提取网络;同时采用一个新的二分类损失函数使模型训练能够对难易样本设置不同的权重。 最后,通过在构建的复杂背景 SAR 图像船 舶目标检测数据集 SDATA上进行实验, 实验结果表明该算法在复杂背景 SAR 船舶目标检测中其平均检测精度与综合评价指标 F1 -score 值分别为88. 9% 和 91. 2% ,检测速度达 42. 1 fps,从而验证了该模型不仅能够有效提升复杂背景 SAR 图像船舶目标的检测精度,而且在一定程度上提高了目标的检测速度。
Abstract:
Aiming at the problem that ship detection in complex background SAR images is easily affected by ground objects,which leads to low detection rate of model, we propose to introduce CBAM,which combines channel and space mechanism,into target detection network. The expansion convolution and concatenation feature fusion technology are applied to the target detection network to improve the robustness of model to small targets. In order to further improve the detection speed of model,the lightweight Mobile Net is used,and a new two class loss function is used to make the model training set different weights for difficult and easy samples. Finally,experiments are carried out on SDATA,a ship target detection data set with complex background SAR images. It is showed that the mean average precision and comprehensive evaluation index F1 -score of the proposed algorithm are 88. 9% and 91. 2% respectively,and the detection speed is 42. 1 fps. It is verified that the proposed model can not only effectively improve the detection accuracy of ship targets in SAR images with complex background,but also improve the detection speed to? ?a certain extent.

相似文献/References:

[1]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
 LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(10):29.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(10):179.
[3]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(10):60.
[4]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(10):181.
[5]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(10):37.
[6]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100.
 LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(10):100.
[7]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(10):221.
[8]章文洁[][],黄旻[],张桂峰[]. 滤光片多光谱成像中运动目标场景误配准修正[J].计算机技术与发展,2016,26(01):18.
 ZHANG Wen-jie[][],HUANG Min[],ZHANG Gui-feng[]. Misregistration Correction for Moving Object Scene in Filter-type Multispectral Imaging[J].,2016,26(10):18.
[9]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(10):19.
[10]张夏清,茅耀斌. 一种改进的ViBe背景提取算法[J].计算机技术与发展,2016,26(07):36.
 ZHANG Xia-qing,MAO Yao-bin. An Improved ViBe Background Generation Method[J].,2016,26(10):36.
[11]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(10):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[12]丁洪金,宫法明.基于时序分析的人体活动状态识别与定位[J].计算机技术与发展,2019,29(04):82.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 017]
 DING Hong-jin,GONG Fa-ming.Human Activities Recognition and Location Based on Temporal Analysis[J].,2019,29(10):82.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 017]
[13]陈莉君,李 卓.基于深度神经压缩的 YOLO 优化[J].计算机技术与发展,2019,29(12):72.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 013]
 CHEN Li-jun,LI Zhuo.YOLO Optimization Based on Deep Neural Compression[J].,2019,29(10):72.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 013]
[14]许必宵,宫 婧,孙知信.基于卷积神经网络的目标检测模型综述[J].计算机技术与发展,2019,29(12):87.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
 XU Bi-xiao,GONG Jing,SUN Zhi-xin.A Survey of Object Detection Models Based on Convolutional Neural Networks[J].,2019,29(10):87.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
[15]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(10):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[16]宫法明,马玉辉.基于时空双分支网络的人体动作识别研究[J].计算机技术与发展,2020,30(09):23.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 005]
 GONG Fa-ming,MA Yu-hui.Research on Human Action Recognition Based on Space-time Double-branch Network[J].,2020,30(10):23.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 005]
[17]何 松,孙 静,郭乐江,等.基于激光 SLAM 和深度学习的语义地图构建[J].计算机技术与发展,2020,30(09):88.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 016]
 HE Song,SUN Jing,GUO Le-jiang,et al.Semantic Mapping Based on Laser SLAM and Deep Learning[J].,2020,30(10):88.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 016]
[18]余 进,史燕中,王春华,等.一种轻量化目标检测算法研究[J].计算机技术与发展,2020,30(11):42.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 008]
 YU Jin,SHI Yan-zhong,WANG Chun-hua,et al.Research of a Lightweight Object Detection Algorithm[J].,2020,30(10):42.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 008]
[19]李 威,李 楠,于清玲.基于 Faster RCNN 的可回收物自动分类算法研究[J].计算机技术与发展,2021,31(增刊):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 020]
 LI Wei,LI Nan,YU Qing-ling.Research on Automatic Classification Algorithm of Recyclables Based on Faster RCNN[J].,2021,31(10):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 020]
[20]周巧瑜,曹 扬,詹瑾瑜,等.基于 Yolo 和 GOTURN 的景区游客翻越行为识别[J].计算机技术与发展,2022,32(01):134.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 023]
 ZHOU Qiao-yu,CAO Yang,ZHAN Jin-yu,et al.A Fence Climbing Behavior Recognition of Scenic AreaTourist Based on Yolo and GOTURN[J].,2022,32(10):134.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 023]

更新日期/Last Update: 2021-10-10