相似文献/References:
[1]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(10):29.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(10):179.
[3]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(10):60.
[4]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(10):181.
[5]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(10):37.
[6]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100.
LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(10):100.
[7]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(10):221.
[8]章文洁[][],黄旻[],张桂峰[]. 滤光片多光谱成像中运动目标场景误配准修正[J].计算机技术与发展,2016,26(01):18.
ZHANG Wen-jie[][],HUANG Min[],ZHANG Gui-feng[]. Misregistration Correction for Moving Object Scene in Filter-type Multispectral Imaging[J].,2016,26(10):18.
[9]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(10):19.
[10]张夏清,茅耀斌. 一种改进的ViBe背景提取算法[J].计算机技术与发展,2016,26(07):36.
ZHANG Xia-qing,MAO Yao-bin. An Improved ViBe Background Generation Method[J].,2016,26(10):36.
[11]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(10):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[12]丁洪金,宫法明.基于时序分析的人体活动状态识别与定位[J].计算机技术与发展,2019,29(04):82.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 017]
DING Hong-jin,GONG Fa-ming.Human Activities Recognition and Location Based on Temporal Analysis[J].,2019,29(10):82.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 017]
[13]陈莉君,李 卓.基于深度神经压缩的 YOLO 优化[J].计算机技术与发展,2019,29(12):72.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 013]
CHEN Li-jun,LI Zhuo.YOLO Optimization Based on Deep Neural Compression[J].,2019,29(10):72.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 013]
[14]许必宵,宫 婧,孙知信.基于卷积神经网络的目标检测模型综述[J].计算机技术与发展,2019,29(12):87.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
XU Bi-xiao,GONG Jing,SUN Zhi-xin.A Survey of Object Detection Models Based on Convolutional Neural Networks[J].,2019,29(10):87.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
[15]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(10):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[16]宫法明,马玉辉.基于时空双分支网络的人体动作识别研究[J].计算机技术与发展,2020,30(09):23.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 005]
GONG Fa-ming,MA Yu-hui.Research on Human Action Recognition Based on Space-time Double-branch Network[J].,2020,30(10):23.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 005]
[17]何 松,孙 静,郭乐江,等.基于激光 SLAM 和深度学习的语义地图构建[J].计算机技术与发展,2020,30(09):88.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 016]
HE Song,SUN Jing,GUO Le-jiang,et al.Semantic Mapping Based on Laser SLAM and Deep Learning[J].,2020,30(10):88.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 016]
[18]余 进,史燕中,王春华,等.一种轻量化目标检测算法研究[J].计算机技术与发展,2020,30(11):42.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 008]
YU Jin,SHI Yan-zhong,WANG Chun-hua,et al.Research of a Lightweight Object Detection Algorithm[J].,2020,30(10):42.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 008]
[19]李 威,李 楠,于清玲.基于 Faster RCNN 的可回收物自动分类算法研究[J].计算机技术与发展,2021,31(增刊):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 020]
LI Wei,LI Nan,YU Qing-ling.Research on Automatic Classification Algorithm of Recyclables Based on Faster RCNN[J].,2021,31(10):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 020]
[20]周巧瑜,曹 扬,詹瑾瑜,等.基于 Yolo 和 GOTURN 的景区游客翻越行为识别[J].计算机技术与发展,2022,32(01):134.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 023]
ZHOU Qiao-yu,CAO Yang,ZHAN Jin-yu,et al.A Fence Climbing Behavior Recognition of Scenic AreaTourist Based on Yolo and GOTURN[J].,2022,32(10):134.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 023]