[1]杨学杰,李思毛,李建业,等.面向巡检机器人的电力设备状态检测算法研究[J].计算机技术与发展,2021,31(03):201-205.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 035]
 YANG Xue-jie,LI Si-mao,LI Jian-ye,et al.Research on Algorithm for Equipment Condition Monitoring Based on Inspection Robot[J].,2021,31(03):201-205.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 035]
点击复制

面向巡检机器人的电力设备状态检测算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年03期
页码:
201-205
栏目:
应用前沿与综合
出版日期:
2021-03-10

文章信息/Info

Title:
Research on Algorithm for Equipment Condition Monitoring Based on Inspection Robot
文章编号:
1673-629X(2021)03-0201-05
作者:
杨学杰1李思毛1李建业1李宋林1张 旭2
1. 国网淄博供电公司,山东 淄博 255000;
2. 国网智能科技股份有限公司,山东 济南 250101
Author(s):
YANG Xue-jie1LI Si-mao1LI Jian-ye1LI Song-lin1ZHANG Xu2
1. State Grid Zibo Power Supply Company,Zibo 255000,China;
2. State Grid Intelligent Technology Co. ,Ltd. ,Jinan 250101,China
关键词:
变电站巡检机器人目标检测YOLOv3模型压缩通道剪枝层剪枝
Keywords:
substation inspection robotobject detectionYOLOv3model compressionchannel pruninglayer pruning
分类号:
TP391. 41
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 03. 035
摘要:
为更高效利用变电站巡检机器人开展电力巡检工作,满足电力行业发展对智能化巡检的需求, 研究了面向电力巡检机器人的电力设备状态检测算法。 首先,根据深度网络部署硬件芯片应用情况与性能对比,选择海思 Hi3559A 芯片作为算法移植的嵌入式平台。 然后综合考虑各种检测算法的精度与速度,选用 YOLOv3 算法作为设备状态检测的基本判别模型。 为了提升检测算法速度并减少模型体积,开展模型压缩算法及轻量型 YOLOv3 模型设计研究,分别提出了改进的小型化 YOLOv3 模型和基于通道剪枝与层剪枝结合的模型压缩方法,提高模型上下层的语义信息及剪枝后模型的精度保持。 根据测试结果选择最优的模型在机器人前端部署,提出的轻量化 YOLOv3 模型很好地保持了设备目标与异物检测的精度,检测速度提升了 4 倍。
Abstract:
In order to implement power equipment inspection work using substation inspection robot efficiently and meet the demand of the development of electric power industry for intelligent inspection,the status detection algori-thm of electric equipment for electric power inspection robot is researched. Firstly,Hi3559A chip is chosen as an embedded development platform to implement arithmetic transplant according to the comparison of pro-perties and application between different hardware chips. Taking the accuracy and speed of various detection algorithms,YOLOv3 algorithm is selected as the basic discriminant model of device state detection. In order to improve the speed of detection algorithm and reduce model size,the model compression algorithm and the lightweight YOLOv3 model are designed and studied. Both improved tiny YOLOv3 and model compression algorithm based on channel pruning and layer pruning are proposed to improve semantic information extrac-tion and holding accuracy of original model. The optimal model is chosen to deploy on the hardware platform according to the test results. The experiment demonstrates that the proposed lightweight YOLOv3 model maintains the detection accuracy of equipment targets and foreign bodies well,and the detection speed is increased by 4 times.

相似文献/References:

[1]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
 LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(03):29.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(03):179.
[3]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(03):60.
[4]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(03):181.
[5]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(03):37.
[6]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100.
 LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(03):100.
[7]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(03):221.
[8]章文洁[][],黄旻[],张桂峰[]. 滤光片多光谱成像中运动目标场景误配准修正[J].计算机技术与发展,2016,26(01):18.
 ZHANG Wen-jie[][],HUANG Min[],ZHANG Gui-feng[]. Misregistration Correction for Moving Object Scene in Filter-type Multispectral Imaging[J].,2016,26(03):18.
[9]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(03):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[10]张夏清,茅耀斌. 一种改进的ViBe背景提取算法[J].计算机技术与发展,2016,26(07):36.
 ZHANG Xia-qing,MAO Yao-bin. An Improved ViBe Background Generation Method[J].,2016,26(03):36.

更新日期/Last Update: 2020-03-10