[1]王 翎,孙 涵.基于域适应的多场景车辆检测[J].计算机技术与发展,2019,29(12):158-161.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 028]
 WANG Ling,SUN Han.Vehicle Detection in Different Scenes Based on Domain Adaptation[J].,2019,29(12):158-161.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 028]
点击复制

基于域适应的多场景车辆检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年12期
页码:
158-161
栏目:
应用开发研究
出版日期:
2019-12-10

文章信息/Info

Title:
Vehicle Detection in Different Scenes Based on Domain Adaptation
文章编号:
1673-629X(2019)12-0158-04
作者:
王 翎孙 涵
南京航空航天大学 计算机科学与技术学院,江苏 南京 211106
Author(s):
WANG LingSUN Han
School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
关键词:
目标检测域适应双层 ROI Pooling车辆检测
Keywords:
object detectiondomain adaptationdouble ROI Poolingvehicle detection
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 12. 028
摘要:
一般的目标检测算法均是建立在训练集与测试集相同分布的情况下,但是在应用过程中,经常会出现模型训练的场景与实际使用的场景存在偏差的问题。 这样的分布不匹配会导致模型性能的大幅下降。 针对新的应用场景,重头训练又需要大量标注数据,这将耗费大量人力与时间,代价昂贵。 针对目标检测任务在源域与目标域的分布差异导致的模型性能下降问题,结合域适应的思想,从特征图和检测区域两个层面对目标检测算法 Faster R-CNN 进行改进,提升目标检测模型在多场景下的检测精度。 此外,该模型进一步采用双层 ROI-Pooling 的方法提升域适应效果。 模型采用无监督学习的方法,对两个不同角度下的街道场景数据集进行实验,提升了目标域车辆检测的精度。
Abstract:
General object detection algorithms are based on the same distribution of training set and test set. However,in the application,there is often the problem of deviation between the training scene and the actual scene of the model. Such a mismatch in distribution will lead to a significant drop in model performance. For new application scenarios,re-training model requires a lot of labeling data,which is expensive and difficult. In order to relieve the performance decline of source training model in target domain,we combine the idea of domain adaptation to improve the object detection model Faster R-CNN from two aspects of feature map and detection region,so as toimprove the detection accuracy of the object detection model in multiple scenes. In addition,the two-layer ROI-Pooling method is further adopted in this model to enhance the domain adaptation effect. The experiment is made in two different street scene datasets with unsupervised leaning method to improves the accuracy of vehicle detection in the object area.

相似文献/References:

[1]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
 LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(12):29.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(12):179.
[3]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(12):60.
[4]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(12):181.
[5]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(12):37.
[6]卢官明,衣美佳. 步态识别关键技术研究[J].计算机技术与发展,2015,25(07):100.
 LU Guan-ming,YI Mei-jia. Research on Critical Techniques in Gait Recognition[J].,2015,25(12):100.
[7]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(12):221.
[8]章文洁[][],黄旻[],张桂峰[]. 滤光片多光谱成像中运动目标场景误配准修正[J].计算机技术与发展,2016,26(01):18.
 ZHANG Wen-jie[][],HUANG Min[],ZHANG Gui-feng[]. Misregistration Correction for Moving Object Scene in Filter-type Multispectral Imaging[J].,2016,26(12):18.
[9]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(12):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[10]张夏清,茅耀斌. 一种改进的ViBe背景提取算法[J].计算机技术与发展,2016,26(07):36.
 ZHANG Xia-qing,MAO Yao-bin. An Improved ViBe Background Generation Method[J].,2016,26(12):36.
[11]张永福,宋海林.基于跳跃特征金字塔的域适应目标检测模型[J].计算机技术与发展,2022,32(09):28.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 005]
 ZHANG Yong-fu,SONG Hai-lin.Skip Feature Pyramid Based Domain Adapted Model for Object Detection[J].,2022,32(12):28.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 005]

更新日期/Last Update: 2019-12-10