[1]于 灏,杨建鸣,王小刚.基于改进果蝇算法的工程图纸分割方法研究[J].计算机技术与发展,2018,28(10):124-128.[doi:10.3969/ j. issn.1673-629X.2018.10.026]
 YU Hao,YANG Jian-ming,WANG Xiao-gang.Research on Engineering Drawing Segmentation Method Based on Improved Fruit Fly Optimization Algorithm[J].,2018,28(10):124-128.[doi:10.3969/ j. issn.1673-629X.2018.10.026]
点击复制

基于改进果蝇算法的工程图纸分割方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年10期
页码:
124-128
栏目:
智能、算法、系统工程
出版日期:
2018-10-10

文章信息/Info

Title:
Research on Engineering Drawing Segmentation Method Based on Improved Fruit Fly Optimization Algorithm
文章编号:
1673-629X(2018)10-0124-05
作者:
于 灏 1杨建鸣1王小刚12
1. 内蒙古科技大学 机械工程学院,内蒙古 包头 014010; 2 包头钢铁钢联股份有限公司焦化厂,内蒙古 包头 014010
Author(s):
YU Hao1YANG Jian-ming1WANG Xiao-gang12
1. School of Mechanical Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,China; 2. Coking Plant of Steel Union Corp of Baotou Steel in Inner Mongolia,Baotou 014010,China
关键词:
工程图纸图像分割矢量化果蝇算法最大熵
Keywords:
engineering drawingsimage segmentationvectorizationFOAmaximum entropy
分类号:
TP391.41
DOI:
10.3969/ j. issn.1673-629X.2018.10.026
文献标志码:
A
摘要:
工程图纸是机械行业重要的技术资料,凝结着科研人员大量的智慧与心血,对其进行智能识别与三维重建可以有效发掘与保护其上所载信息。 矢量化是工程图纸智能识别与三维重建的基础,针对工程图纸矢量化预处理中的图像分割问题,提出了一种基于改进果蝇优化算法(fruit fly optimization algorithm,FOA)的最大熵工程图纸分割方法。 参考遗传算法中基因初始化与翻译、表达的机理对果蝇算法进行改进,引进二进制数随机初始化果蝇种群位置,获得具有较好个体多样性的种群,结合最大熵理论使其适用于图像分割中阈值的优化问题。 通过实验证明,基于改进果蝇优化算法的最大熵工程图纸分割算法的准确性较高,其误分率与穷举法相同,低于遗传算法的误分率;运算时间与遗传算法相差不大但明显低于穷举法;在收敛性上优于遗传算法。
Abstract:
Engineering drawings are important technical data in the mechanical industry,which condense a lot of wisdom and painstaking efforts of scientific researchers. Intelligent identification and three-dimensional reconstruction of engineering drawings can effectively explore and protect the information contained on them. Vectorization is the foundation of intelligent identification and three-dimensional reconstruction of engineering drawings. Aiming at the image segmentation in vectorization pre-processing of engineering drawings,we propose a type of maximum entropy engineering drawing partition method based on fruit fly optimization algorithm (FOA). By means of referring to the mechanism of gene initialization,translation and expression,fruit fly algorithm is improved. Secondly,binary figure is introduced to randomly initialize the position of fruit fly population and acquire the population with better individual diversity,which,through combining with maximum entropy theory,is made to adapt to threshold value optimization in image segmentation. The experiment shows that the accuracy of the proposed algorithm is higher. Meanwhile,similar to exhaust algorithm,its misclassification rate is lower than that of genetic algorithm. Besides,its operation time is not quite different from that of genetic algorithm but is obviously lower than that of exhaust algorithm with better astringency than genetic algorithm.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(10):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(10):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(10):101.
[4]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(10):128.
[5]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(10):121.
[6]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(10):105.
[7]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(10):76.
[8]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(10):121.
[9]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(10):69.
[10]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(10):104.

更新日期/Last Update: 2018-10-10