[1]王钛[],许斌[],李林国[],等. 基于离散灰狼算法的多级阈值图像分割[J].计算机技术与发展,2016,26(07):30-35.
 WANG Tai[],XU Bin[],LI Lin-guo[],et al. A Multi-threshold Image Segmentation Algorithm Based on Discrete Grey Wolf Optimization[J].,2016,26(07):30-35.
点击复制

 基于离散灰狼算法的多级阈值图像分割()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年07期
页码:
30-35
栏目:
智能、算法、系统工程
出版日期:
2016-07-10

文章信息/Info

Title:
 A Multi-threshold Image Segmentation Algorithm Based on Discrete Grey Wolf Optimization
文章编号:
1673-629X(2016)07-0030-06
作者:
 王钛[1]许斌[2]李林国[2]亓晋[2]
 1.南京邮电大学 自动化学院;2.南京邮电大学
Author(s):
 WANG Tai[1]XU Bin[2]LI Lin-guo[2]QI Jin[2]
关键词:
 图像分割优化算法离散灰狼算法Kapur熵
Keywords:
 image segmentationoptimization algorithmDiscrete Grey Wolf algorithm ( DGWO)Kapur entropy
分类号:
TP301.6
文献标志码:
A
摘要:
 阈值分割方法的关键在于阈值选取。阈值决定了图像分割结果的好与坏,随着阈值数量的增加,图像分割的计算过程越来越复杂。为了选取适当的阈值进行图像分割,文中提出了离散灰狼算法(Discrete Grey Wolf Optimizer,DGWO),即经过离散化处理的灰狼算法,并用该算法求解以Kapur分割函数为目标函数的全局优化问题。 DGWO算法具有很好的全局收敛性与计算鲁棒性,能够避免陷入局部最优,尤其适合高维、多峰的复杂函数问题的求解,并且可以很好地融合到图像分割过程当中。大量的理论分析和仿真实验的结果表明,与遗传算法( GA)、粒子群算法( PSO)的图像分割结果相比,在选取多张分割图像、多个分割阈值的情况下,该算法具有更好的分割效果,更高的分割效率,优化得到的阈值范围更加稳定,分割质量更高。
Abstract:
 The key of threshold segmentation is to select the thresholds which can determine the result of segmentation. With the increas-ing amounts of thresholds,the computation complexity gets higher. In this paper,a Discrete Grey Wolf Optimization ( DGWO) is pro-posed to select the appropriate thresholds for image segmentation and apply it to the global optimization problem of objective function of Kapur segmentation function. The DGWO can be well blended into image segmentation. It specially suits for solving complex function with high-dimension and multi-peak for its excellent performance in global convergence,robustness and ability to avoid trapping into lo-cal optimization. Extensive theoretical analysis and the results of simulation have shown that DGWO has better effectiveness,efficiency, stability of the range of thresholds and quality in multi-images and multi-thresholds segmentation compared with GA and PSO.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(07):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(07):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(07):101.
[4]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(07):128.
[5]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(07):121.
[6]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(07):105.
[7]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(07):76.
[8]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(07):121.
[9]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(07):69.
[10]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(07):104.
[11]李雷,魏蕴婕. 结合模糊聚类与支持向量机的图像分割[J].计算机技术与发展,2014,24(07):88.
 LI Lei,WEI Yun-jie. Image Segmentation Combined FCM and SVM[J].,2014,24(07):88.
[12]宋欢欢[],李雷[]. 基于模糊熵的自适应多阈值图像分割方法[J].计算机技术与发展,2014,24(12):32.
 SONG Huan-huan[],LI Lei[]. An Adaptive Multi-threshold Image Segmentation Method Based on Fuzzy Entropy[J].,2014,24(07):32.
[13]田若良,刘柏森. 基于频域能量分割的图像模糊度评价方法[J].计算机技术与发展,2015,25(06):101.
 TIAN Ruo-liang,LIU Bai-sen. An Evaluation Method of Image Blur Based on Frequency Domain Energy Partition[J].,2015,25(07):101.
[14]汪昡紫,孙宪坤,高飞. 轨道表面图像处理算法研究[J].计算机技术与发展,2015,25(09):182.
 WANG Xuan-zi,SUN Xian-kun,GAO Fei. Research on Algorithm of Track Surface Image Processing[J].,2015,25(07):182.
[15]叶超. 基于归一化割的血吸虫卵图像分割[J].计算机技术与发展,2015,25(11):27.
 YE Chao. Segmentation of Schistosome Eggs Image Based on Normalized Cut[J].,2015,25(07):27.
[16]张林[],吴振强[]. 基于OpenCV的X光手指骨图像分割方法[J].计算机技术与发展,2015,25(11):200.
 ZHANG Lin[],WU Zhen-qiang[]. X-ray Finger Bone Image Segmentation Method Based on OpenCV[J].,2015,25(07):200.
[17]郭娟,何坤,周激流. 基于卡通提取的自然图像分割[J].计算机技术与发展,2016,26(02):12.
 GUO Juan,HE Kun,ZHOU Ji-liu. Natural Image Segmentation Based on Cartoon Component Extracting[J].,2016,26(07):12.
[18]丁毅,李玉惠,李勃. 基于图像不同亮度区域特征的Gamma矫正方法[J].计算机技术与发展,2016,26(06):37.
 DING Yi,LI Yu-hui,LI Bo. Gamma Correction Based on Different Brightness Regional Features for Images[J].,2016,26(07):37.
[19]洪浩[],霍春宝[],王京[],等. 基于改进Otsu算法在前方目标车辆识别中的研究[J].计算机技术与发展,2016,26(06):78.
 HONG Hao[],HUO Chun-bao[],WANG Jing[],et al. Research on Front Target Vehicle Identification Based on Improved Otsu Algorithm[J].,2016,26(07):78.
[20]李扬,陆璐,崔红霞. 谱聚类图像分割中相似度矩阵构造研究[J].计算机技术与发展,2016,26(07):55.
 LI Yang,LU Lu,CUI Hong-xia. Research on Similarity Matrix Structure in Spectral Clustering Image Segmentation[J].,2016,26(07):55.

更新日期/Last Update: 2016-09-28