[1]宋欢欢[],李雷[]. 基于模糊熵的自适应多阈值图像分割方法[J].计算机技术与发展,2014,24(12):32-36.
 SONG Huan-huan[],LI Lei[]. An Adaptive Multi-threshold Image Segmentation Method Based on Fuzzy Entropy[J].,2014,24(12):32-36.
点击复制

 基于模糊熵的自适应多阈值图像分割方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年12期
页码:
32-36
栏目:
智能、算法、系统工程
出版日期:
2014-12-10

文章信息/Info

Title:
 An Adaptive Multi-threshold Image Segmentation Method Based on Fuzzy Entropy
文章编号:
1673-629X(2014)12-0032-05
作者:
 宋欢欢[1]李雷[2]
 1.南京邮电大学 理学院 应用数学研究中心;2.南京邮电大学 理学院
Author(s):
 SONG Huan-huan[1]LI Lei[2]
关键词:
 图像分割模糊熵隶属度函数窗宽多阈值图像分割
Keywords:
 image segmentationfuzzy entropywindow width of membership functionmulti-threshold image segmentation
分类号:
TP301
文献标志码:
A
摘要:
 模糊技术能够很好地表达和处理不确定问题,是图像处理领域中一种非常重要的技术。基于模糊理论,文中提出了基于模糊熵的自适应多阈值分割方法。根据图像像素的概率分布,将图像行区域化,利用每个区域中像素属于前景和背景的模糊性定义隶属度函数,采用一维搜索方法确定最佳的隶属度函数窗宽,计算最大模糊熵,从而找到区域最优阈值。文中对多目标、光照不均匀、存在噪声和分割不完全的图像进行实验,结果表明该方法能够很好地解决上述问题,并且较传统的基于Otsu和模糊熵的图像单阈值分割方法,效果显著提高,具有较好的适应性和实用性。
Abstract:
 Fuzzy technology,which can well express and deal with uncertain problems,is very important and useful in the field of image processing. Based on the fuzzy theory,an Adaptive Multi-threshold Method (AMM-FE) of image segmentation based on fuzzy entropy is proposed. According to the distribution probability of the image pixels,divide the image into a plurality of regions. Define the member-ship functions using the pixels belonging to the foreground and the background blur in each area,determine the window width of fuzzy membership function by using one-dimension search method,calculating the maximum fuzzy entropy to get the regional optimal thresh-old. By using multi-objective,non-uniform illumination,presence of noise and imperfect image in the experiment,the results show that this method can greatly overcome these incomplete segmentation situations. Compared with traditional single threshold image segmenta-tion methods like Otsu and fuzzy entropy,the effect of this method is significantly improved,which indicates that the proposed AMM-FE method has better adaptability and practicality.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(12):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(12):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(12):101.
[4]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(12):128.
[5]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(12):121.
[6]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(12):105.
[7]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(12):76.
[8]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(12):121.
[9]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(12):69.
[10]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(12):104.
[11]李雷,魏蕴婕. 结合模糊聚类与支持向量机的图像分割[J].计算机技术与发展,2014,24(07):88.
 LI Lei,WEI Yun-jie. Image Segmentation Combined FCM and SVM[J].,2014,24(12):88.
[12]田若良,刘柏森. 基于频域能量分割的图像模糊度评价方法[J].计算机技术与发展,2015,25(06):101.
 TIAN Ruo-liang,LIU Bai-sen. An Evaluation Method of Image Blur Based on Frequency Domain Energy Partition[J].,2015,25(12):101.
[13]汪昡紫,孙宪坤,高飞. 轨道表面图像处理算法研究[J].计算机技术与发展,2015,25(09):182.
 WANG Xuan-zi,SUN Xian-kun,GAO Fei. Research on Algorithm of Track Surface Image Processing[J].,2015,25(12):182.
[14]叶超. 基于归一化割的血吸虫卵图像分割[J].计算机技术与发展,2015,25(11):27.
 YE Chao. Segmentation of Schistosome Eggs Image Based on Normalized Cut[J].,2015,25(12):27.
[15]张林[],吴振强[]. 基于OpenCV的X光手指骨图像分割方法[J].计算机技术与发展,2015,25(11):200.
 ZHANG Lin[],WU Zhen-qiang[]. X-ray Finger Bone Image Segmentation Method Based on OpenCV[J].,2015,25(12):200.
[16]郭娟,何坤,周激流. 基于卡通提取的自然图像分割[J].计算机技术与发展,2016,26(02):12.
 GUO Juan,HE Kun,ZHOU Ji-liu. Natural Image Segmentation Based on Cartoon Component Extracting[J].,2016,26(12):12.
[17]丁毅,李玉惠,李勃. 基于图像不同亮度区域特征的Gamma矫正方法[J].计算机技术与发展,2016,26(06):37.
 DING Yi,LI Yu-hui,LI Bo. Gamma Correction Based on Different Brightness Regional Features for Images[J].,2016,26(12):37.
[18]洪浩[],霍春宝[],王京[],等. 基于改进Otsu算法在前方目标车辆识别中的研究[J].计算机技术与发展,2016,26(06):78.
 HONG Hao[],HUO Chun-bao[],WANG Jing[],et al. Research on Front Target Vehicle Identification Based on Improved Otsu Algorithm[J].,2016,26(12):78.
[19]王钛[],许斌[],李林国[],等. 基于离散灰狼算法的多级阈值图像分割[J].计算机技术与发展,2016,26(07):30.
 WANG Tai[],XU Bin[],LI Lin-guo[],et al. A Multi-threshold Image Segmentation Algorithm Based on Discrete Grey Wolf Optimization[J].,2016,26(12):30.
[20]李扬,陆璐,崔红霞. 谱聚类图像分割中相似度矩阵构造研究[J].计算机技术与发展,2016,26(07):55.
 LI Yang,LU Lu,CUI Hong-xia. Research on Similarity Matrix Structure in Spectral Clustering Image Segmentation[J].,2016,26(12):55.

更新日期/Last Update: 2015-04-15