[1]卢振宇,郭星,魏赛,等.基于计算机视觉的虚拟安全空间预警技术[J].计算机技术与发展,2014,24(02):237-241.
 LU Zhen-yu,GUO Xing,WEI Sai,et al.A Surveillance Technology for Virtual Security Space Based on Computer Vision[J].,2014,24(02):237-241.
点击复制

基于计算机视觉的虚拟安全空间预警技术()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年02期
页码:
237-241
栏目:
应用开发研究
出版日期:
2014-02-28

文章信息/Info

Title:
A Surveillance Technology for Virtual Security Space Based on Computer Vision
文章编号:
1673-629X(2014)02-0237-05
作者:
卢振宇郭星魏赛汪磊
安徽大学 计算机科学与技术学院
Author(s):
LU Zhen-yuGUO XingWEI SaiWANG Lei
关键词:
计算机视觉预警透视投影视频监控安全空间
Keywords:
computer visionwarning systemperspective projectionvideo surveillancesecurity space
分类号:
TP309
文献标志码:
A
摘要:
随着现代工业技术的飞速发展,现代工业对安全的要求也越来越高。在工作环境中,由于一些原因如操作人员的注意力、判断力、视力范围的限制,极易发生作业设备超过警戒线而发生事故。文中利用计算机视觉技术,提出了一种虚拟安全空间的预警技术。通过两个摄像头采集实时环境图像,根据透视投影模型和矫正过后的图像中的点的三维位置坐标以及两个摄像头的坐标位置,计算出目标物的物理坐标,然后根据物理坐标计算出目标物和虚拟安全空间之间的距离,将其与安全距离比较,实现预警。仿真实验表明,此项预警技术具有良好的实时性和准确性,能够满足一定范围内的预警需求。
Abstract:
With the rapid development of modern industry,the modern industry's security requirements are also getting higher and high-er. In the work environment,due to some reasons such as the operator's attention,judgment,the limit of the visual range,prone to occur accident when the operating equipment exceeds the warning line. Using computer vision technology,a virtual secure space early warning technology is proposed,through the two camera to collect real-time environmental image,according to the perspective projection model and the three-dimensional position coordinates of the points in the corrected image and the two camera coordinate position,to calculate the physical coordinate of target object,then according to the physical coordinate to calculate the distance between the object and the vir-tual secure space,comparing with the safe distance,to achieve early warning. Simulation results show that this warning technology has good real-time performance and accuracy,can meet the requirements of early warning in a certain range.

相似文献/References:

[1]黄艳 赵越.3D靶标的摄像机三步标定算法与实现[J].计算机技术与发展,2010,(01):135.
 HUANG Yan,ZHAO Yue.Algorithm and Realization of Three-step Camera Calibration Based on 3D-Target[J].,2010,(02):135.
[2]付海洋 牛连强 刘守琳.一种基于平面模板的单应矩阵求解方法[J].计算机技术与发展,2010,(04):69.
 FU Hai-yang,NIU Lian-qiang,LIU Shou-lin.A Solving Homography Matrix Method Based on Planar Pattern[J].,2010,(02):69.
[3]潘洁珠 吴共庆 胡学钢 张润梅[].基于领域知识的预警规则发现研究[J].计算机技术与发展,2008,(07):66.
 PAN Jie-zhu,WU Gong-qing,HU Xue-gang,et al.Research of Mining Early Warning Rules Based on Domain Knowledge[J].,2008,(02):66.
[4]张铖伟 王彪 徐贵力.摄像机标定方法研究[J].计算机技术与发展,2010,(11):174.
 ZHANG Cheng-wei,WANG Biao,XU Gui-li.A Study on Classification of Camera Calibration Methods[J].,2010,(02):174.
[5]毛雁明 杨慧玲.一种新的立体匹配算法[J].计算机技术与发展,2011,(03):105.
 MAO Yan-ming,YANG Hui-ling.A New Stereo Matching Algorithm[J].,2011,(02):105.
[6]闫涛 吕丽民.物联网技术在企业安全生产中的应用[J].计算机技术与发展,2012,(02):226.
 YAN Tao,L Li-min.Application of Internet of Things Technology in Enterprise Production Safety[J].,2012,(02):226.
[7]杨晟,李学军,王珏,等.连续尺度复合分析核线重排列影像准稠密匹配[J].计算机技术与发展,2013,(04):111.
 YANG Sheng,LI Xue-jun,WANG Jue,et al.Continuous Scale Multi-change Detecting Quasi-dense Matching for Epipolar Resample Images[J].,2013,(02):111.
[8]李春生,魏军,王博,等.油田生产动态预警模型研究[J].计算机技术与发展,2013,(04):245.
 LI Chun-sheng,WEI Jun,WANG Bo,et al.Research on Dynamic Early Warning Model of Oilfield Production[J].,2013,(02):245.
[9]李孟,周波,孟正大,等. 三目立体相机的标定研究[J].计算机技术与发展,2015,25(02):69.
 LI Meng,ZHOU Bo,MENG Zheng-da,et al. Study on Trinocular Stereo Camera Calibration[J].,2015,25(02):69.
[10]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(02):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]

更新日期/Last Update: 1900-01-01