[1]李嘉刚 李小宁 石杰 庄敏 陈戈.GrabCut在人体序列切片图像分割中的应用[J].计算机技术与发展,2011,(12):246-249.
 LI Jia-gang,LI Xiao-ning,SHI Jie,et al.Application of GrabCut in Human Serially Sectioned Image Segmentation[J].,2011,(12):246-249.
点击复制

GrabCut在人体序列切片图像分割中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年12期
页码:
246-249
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Application of GrabCut in Human Serially Sectioned Image Segmentation
文章编号:
1673-629X(2011)12-0246-04
作者:
李嘉刚1 李小宁1 石杰2 庄敏1 陈戈1
[1]中国海洋大学信息科学与工程学院[2]青岛市市立医院
Author(s):
LI Jia-gang LI Xiao-ning SHI Jie ZHUANG Min CHEN Ge
[1]College of Information Science and Engineering, Ocean University of China[2]Qingdao Municipal Hospital
关键词:
GrabCut图像分割韩国人体数据集
Keywords:
GrabCutimage segmentation visible Korean human data sets
分类号:
TP31
文献标志码:
A
摘要:
将GrabCut算法应用于人体序列切片图像分割,解决手动分割操作繁琐、效率低等问题。在简要介绍GrabCut算法基础上,选取可视化韩国人体数据集(VKH)中肾脏部位的序列图像,利用该算法对肾脏进行分割。通过Visual C++环境,在自主开发的三维人体肾脏结构虚拟现实软件(VRKidney)中实现了肾脏分割、修改功能、同一幅图像分割多个对象功能等,与手动分割法、边界提取法的比较,验证了该方法具有操作简单、高效的特点。研究表明GrabCut算法操作简单、分割效率高,可以很好完成人体序列切片图像的分割
Abstract:
Applying the GmbCut algorithm in human serially sectioned image segmentation can solve the problems of complicated operation and low efficiency in manual segmentation. Based on the essential principle GrabCut, select serial images of kidney from visible Korean human data set and apply the CrrabCut algorithm to achieve renal segmentation. It' s implemented in VRKidney platform which is developed under the conditions of Visual C++, the function of modification and segmenting multiple objects in one image are also finished, and the efficiency of the algorithm is proved by comparing with manual method and bound extraction method. The research shows that GrabCut algorithm is easy to operate, high-efficiency to segmentation and can excellently complete ,segmentation

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(12):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(12):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(12):101.
[4]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(12):128.
[5]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(12):121.
[6]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(12):105.
[7]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(12):76.
[8]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(12):121.
[9]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(12):69.
[10]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(12):104.

备注/Memo

备注/Memo:
国家自然科学基金项目(60873170);教育部博士点基金课题(200804230003)李嘉刚(1985-),男,硕士生,研究方向为图像处理、虚拟现实;陈戈,博士,教授,研究方向为海洋遥感、海洋地理信息系统、虚拟现实等
更新日期/Last Update: 1900-01-01