[1]张琴 蔡勇.支持向量学习机在点云去噪中的应用[J].计算机技术与发展,2011,(06):85-88.
 ZHANG Qin,CAI Yong.Application of Support Vector Machine in Point Clouds Denoising[J].,2011,(06):85-88.
点击复制

支持向量学习机在点云去噪中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年06期
页码:
85-88
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Application of Support Vector Machine in Point Clouds Denoising
文章编号:
1673-629X(2011)06-0085-04
作者:
张琴1 蔡勇2
[1]西南科技大学计算机科学与技术学院[2]西南科技大学制造科学与工程学院
Author(s):
ZHANG Qin CAI Yong
[1]Institute of Computer Science and Technology,Southwest University of Science and Technology[2]Institute of Manufacturing Science and Engineering,Southwest University of Science and Technology
关键词:
点云支持向量机去噪分类
Keywords:
point clouds support vector machine denoising classify
分类号:
TP181
文献标志码:
A
摘要:
在解决非线性、高维模式识别以及小样本等问题中,支持向量机表现出许多独有的优势。提出将支持向量机学习分类方法应用于点云去噪中,能够稳定地进行机器学习,训练得到判别模型,快速、准确地识别出噪声点与非噪声点。通过对小样本数据的统计学习,能够推广到大规模数据中去进行结果的预测估计。用SVM对点云数据样本进行学习训练、测试,识别分类,从而达到去噪光顺的目的。实验表明,此方法在有效去除噪声的同时能较完整地保留点云数据信息
Abstract:
SVM represented many unique advantages in many applications,such as solving the problem of nonlinear,high dimension pattern recognition and small sample problem.A method was promoted in this paper.It was removing point clouds using SVM sorting technique.It could be generalized to test and estimate the big scale data by training the small sample.SVM classification method was used to train,test,classify the point clouds data sample,so that it could achieve to the goal of denoising.The experiment showed that this method could remove the noise effectively while preserving the point clouds information relative completely

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(06):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(06):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(06):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(06):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(06):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(06):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(06):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(06):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(06):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(06):147.

备注/Memo

备注/Memo:
国家自然科学基金项目(10576027)张琴(1985-),女,硕士,研究方向为计算机图形图像处理、反求工程蔡勇,博士,教授,研究方向为计算机图形学、智能控制等
更新日期/Last Update: 1900-01-01