[1]叶小娇 李汪根 黄尧颖.支持向量机在个人信用评估中的应用[J].计算机技术与发展,2011,(03):213-216.
 YE Xiao-jiao,LI Wang-gen,HUANG Yao-ying.Application of Support Vector Machines in Personal Credit Rating[J].,2011,(03):213-216.
点击复制

支持向量机在个人信用评估中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年03期
页码:
213-216
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Application of Support Vector Machines in Personal Credit Rating
文章编号:
1673-629X(2011)03-0213-04
作者:
叶小娇 李汪根 黄尧颖
安徽师范大学数学计算机科学学院
Author(s):
YE Xiao-jiao LI Wang-gen HUANG Yao-ying
College of Mathematics and Computer Science ,An hui Normal University
关键词:
信用评估支持向量机不平衡数据分类
Keywords:
credit rating support vector machines unbalanced data classification
分类号:
TP181
文献标志码:
A
摘要:
个人信用评估在银行信贷业务中有着举足轻重的作用。为了提高银行对个人信用评估的准确率,将支持向量机应用到个人信用评估中,以德国信贷数据为数据集,采用网格-5折交叉验证方法获取核函数最优参数,然后选择不同的核函数及其最优参数进行训练建模,实验得出RBF核函数更适合该数据集。针对样本中数据不平衡的问题,通过改变权重的方式对不同类别设置不同的惩罚参数。实验结果表明,该方法在保证总的预测准确率较好的前提下,有效地平衡了第一类和第二类错误率,可以作为银行信贷决策的参考依据
Abstract:
Personal credit rating plays a vital role in bank credit business. In order to increase personal credit rating accuracy, support vector machines (SVM) is used to solve the problem of personal credit rating prediction in this paper. With the data set about credit from Germany, optimal parameters are obtained using 5-cross validation via parallel grid search, then four different kernel functions are selected to train the date set. The experimental results demonstrate that RBF kernel function is more suitable for the data set. As the data set is unbalanced, the rates of the first class error and the second class error are efficiently balanced by setting different punishment for different datasets under the premise of better overall prediction accuracy. It can be used as reference for the bank credit decisions

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(03):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(03):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(03):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(03):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(03):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(03):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(03):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(03):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(03):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(03):147.

备注/Memo

备注/Memo:
安徽省自然科学研究重点项目(KJ2010A140)叶小娇(1983-),女,浙江台州人,硕士研究生,研究方向为智能算法及其应用;李汪根,硕士生导师,研究方向为生物计算和智能计算
更新日期/Last Update: 1900-01-01