[1]张利霞,高俊涛,马 强,等.基于改进 UNet++的地震断层识别方法研究[J].计算机技术与发展,2023,33(08):199-205.[doi:10. 3969 / j. issn. 1673-629X. 2023. 08. 029]
 ZHANG Li-xia,GAO Jun-tao,MA Qiang,et al.Research on Seismic Fault Identification Methods Based on Improved UNet++[J].,2023,33(08):199-205.[doi:10. 3969 / j. issn. 1673-629X. 2023. 08. 029]
点击复制

基于改进 UNet++的地震断层识别方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年08期
页码:
199-205
栏目:
新型计算应用系统
出版日期:
2023-08-10

文章信息/Info

Title:
Research on Seismic Fault Identification Methods Based on Improved UNet++
文章编号:
1673-629X(2023)08-0199-07
作者:
张利霞1 高俊涛1 马 强2 杨润湉1 王志宝1 李 菲2
1. 东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318;
2. 黑龙江八一农垦大学 信息与电气工程学院,黑龙江 大庆 163319
Author(s):
ZHANG Li-xia1 GAO Jun-tao1 MA Qiang2 YANG Run-tian1 WANG Zhi-bao1 LI Fei2
1. School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China;
2. School of Information and Electrical Engineering,Heilongjiang Bayi Agricultural University,Daqing 163319,China
关键词:
地震断层识别图像分割UNet++模型CBAM 注意力模块DropBlock
Keywords:
seismic fault identificationimage segmentationUNet++ modelCBAM attention moduleDropBlock
分类号:
TP18
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 08. 029
摘要:
断层解释是油气勘探开发过程中的重要工作,但是随着勘探规模的增大,传统的人工解释断层的方法已经无法满足实际生产的需要。 针对人工标注断层特征费时费力、传统断层识别结果连续性不足的局限,以及地震资料中断层与非断层样本分类不均衡的问题,提出基于 CBAM-UNet++模型的地震断层识别方法。 采用合成地震数据自动生成地震数据和断层标签,提高断层标注的效率。 首先,将 CBAM 注意力模块引入 UNet++,从通道和空间两个维度抑制地震振幅信号干扰,增强地震断层的检测能力,采用 DropBlock 模块抑制网络中产生的过拟合问题;其次,引入 Dice Loss 损失函数用于减小断层识别任务中数据不均衡问题对模型的影响;再次,对断层预测结果进行霍夫变换,提取骨架,使断层预测结果更好地应用于地质目标;最后,在合成地震数据集、北海地区 F3 区块真实地震数据上评估 CBAM - UNet + + 模型,与 UNet + +、UNet、SegNet 进行对比。 结果表明,基于 CBAM-UNet++的断层识别方法在准确率、断层连续性方面表现优异,可自动、有效地识别地震图像中的断层。
Abstract:
Fault interpretation is an important task in the exploration and development process of oil and gas. However,as the explorationscale increases,the?
traditional manual fault interpretation can no longer satisfy the needs of actual production. In light of the limitations ofmanual fault annotation,such?
as being time-consuming & laborious,insufficient continuity of traditional fault identification results,andthe unbalanced classification of fault and non-
fault samples in seismic data,a seismic fault identification method based on CBAM-UNet++model is proposed,which adopts synthesized seismic data to automatically generate seismic data and fault labels,so as to improve the efficiency of fault annotation. Firstly,we introduce the CBAM attention module?
into UNet + +,which suppresses the signal interference ofseismic amplitude from the two dimensions of channel and space to enhance the detectability?
of seismic fault,and suppresses the overfitting in the network with the use of DropBlock module. Secondly, introduce the Dice Loss function to reduce the impact of dataimbalance on the model in fault identification task. Thirdly, perform Hough transform to the fault prediction results for skeletonextracting,so?
that the fault prediction results can be better applied to geological objectives. Finally,evaluate the CBAM-UNet++ modelbased on the synthesized seismic data set and the real seismic data of F3 block in the North Sea,and compare with UNet+ +,UNet andSegNet. The results indicate that the fault identification method based on CBAM-UNet++ model has excellent performance in terms ofaccuracy and fault continuity,and can identify faults in seismic images automatically and effectively.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(08):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(08):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(08):101.
[4]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(08):128.
[5]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(08):121.
[6]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(08):105.
[7]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(08):76.
[8]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(08):121.
[9]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(08):69.
[10]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(08):104.

更新日期/Last Update: 2023-08-10