[1]吴浩然.基于改进 PSO 的三维 Tsallis 熵图像分割[J].计算机技术与发展,2023,33(03):41-48.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 007]
 WU Hao-ran.Three Dimensional Tsallis Entropy Image Segmentation Based on Improved PSO[J].,2023,33(03):41-48.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 007]
点击复制

基于改进 PSO 的三维 Tsallis 熵图像分割()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年03期
页码:
41-48
栏目:
媒体计算
出版日期:
2023-03-10

文章信息/Info

Title:
Three Dimensional Tsallis Entropy Image Segmentation Based on Improved PSO
文章编号:
1673-629X(2023)03-0041-08
作者:
吴浩然
合肥工业大学 数学学院,安徽 合肥 230601
Author(s):
WU Hao-ran
School of Mathematics,Hefei University of Technology,Hefei 230601,China
关键词:
粒子群优化算法Tsallis 熵图像分割综合学习策略三维直方图
Keywords:
particle swarm optimizationTsallis entropyimage segmentationcomprehensive learning strategiesthree dimensional histogram
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 03. 007
摘要:
针对二维 Tsallis 熵图像分割不精确以及优化图像阈值分割函数的元启发式优化算法容易陷入局部最优这两个问题,提出了一种新的三维 Tsallis 熵阈值分割法以及一种新的改进粒子群优化算法。 通过引入均值、中值、梯度三种因素,构建出三维直方图,并结合 Tsallis 熵理论提出了一种三维 Tsallis 熵阈值分割法。 为了避免粒子群优化算法陷入局部最优,通过引入综合学习策略并改进粒子群优化算法的迭代方式,提出了综合学习改进粒子群优化算法。 将提出的三维 Tsallis熵阈值分割法与综合学习改进粒子群优化算法结合进行图像分割。 与其他元启发式算法相比,综合学习改进粒子群优化算法能在低维环境下有效避免局部最优。 实验结果表明相比于二维 Tsallis 熵阈值分割法,三维 Tsallis 熵阈值分割法分割效果更好,且具有更好的抗噪性能。 由此可以表明综合学习改进粒子群优化算法结合三维 Tsallis 熵进行图像分割可以取得更好的结果。
Abstract:
Aiming at the two problems that the two-dimensional Tsallis entropy image segmentation is inaccurate and the meta heuristicoptimization algorithm for optimizing the image threshold segmentation function is easy to fall into local optimization,a new three-dimensional Tsallis entropy threshold segmentation method and a new improved particle swarm optimization algorithm are proposed. By introducing three factors: average, median and gradient, a three - dimensional histogram is constructed, and a three - dimensional Tsallisentropy threshold segmentation method is proposed combined with Tsallis entropy theory. In order to avoid the particle swarmoptimization algorithm falling into local optimization, comprehensive learning improved particle swarm optimization is proposed byintroducing comprehensive learning strategy and improving the iterative method of particle swarm optimization algorithm. The proposedthree-dimensional Tsallis entropy threshold segmentation method is combined with the comprehensive learning improved particle swarmoptimization algorithm for image segmentation. Compared with other meta heuristic algorithms, the comprehensive learning improvedparticle swarm optimization algorithm can effectively avoid local optimization in low dimensional environment. The experimental resultsshow that compared with the two - dimensional Tsallis entropy threshold segmentation method, the three - dimensional Tsallis entropythreshold segmentation method has better segmentation effect and better anti noise performance. It is showed that the improved particleswarm optimization algorithm combined with three-dimensional Tsallis entropy can achieve better results.

相似文献/References:

[1]张雯雰 李丽娟 滕少华[] 罗玉玲.粒子群优化算法在桁架结构优化中的应用[J].计算机技术与发展,2010,(05):223.
 ZHANG Wen-fen,LI Li-juan,TENG Shao-hua,et al.Improved Particle Swarm Optimizer Algorithm for Design Optimization of Structures[J].,2010,(03):223.
[2]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(03):25.
[3]张艳丽 保文星.粒子群优化算法在图像边缘检测中的研究应用[J].计算机技术与发展,2009,(05):26.
 ZHANG Yan-li,BAO Wen-xing.Research and Application of Image Edge Detection Based on PSO Algorithm[J].,2009,(03):26.
[4]聂笃宪.基于PSO自适应正则化参数图像恢复的研究[J].计算机技术与发展,2009,(01):106.
 NIE Du-xian.Research on Adaptively Regularized Parameter Image Restoration PSO- Based[J].,2009,(03):106.
[5]谭伟 李向.微粒群优化算法的研究[J].计算机技术与发展,2009,(03):87.
 TAN Wei,LI Xiang.Research Status and Development of Particle Swarm Optimization[J].,2009,(03):87.
[6]曾万里 危韧勇 陈红玲.基于改进PSO算法的BP神经网络的应用研究[J].计算机技术与发展,2008,(04):49.
 ZENG Wan-li,WEI Ren-yong,CHEN Hong-ling.Research and Application of BP Neural Network Based on Improved PSO Algorithm[J].,2008,(03):49.
[7]朱玉平.一种改进粒子群优化算法[J].计算机技术与发展,2008,(11):106.
 ZHU Yu-ping.An Algorithm of Modified Particle Swarm Optimization[J].,2008,(03):106.
[8]林杰 孙淑霞 文武.基于粒子群优化算法的图像小波阈值去噪研究[J].计算机技术与发展,2007,(04):204.
 LIN Jie,SUN Shu-xia,WEN Wu.An Image Denoising Method Based on Wavelet Transform and Particle Swarm Optimization[J].,2007,(03):204.
[9]肖裕权 周肆清.基于粒子群优化算法的数据流聚类算法[J].计算机技术与发展,2011,(10):43.
 XIAO Yu-quan,ZHOU Si-qing.Clustering Evolving Data Streams Based on Particle Swarm Optimization[J].,2011,(03):43.
[10]林云光 陈月辉 邵光亭.基于前馈人工神经网络的miRNA预测[J].计算机技术与发展,2012,(05):19.
 LIN Yun-guang,CHEN Yue-hui,SHAO Guang-ting.Prediction of miRNA Based on Feedforward Artificial Neural Network[J].,2012,(03):19.

更新日期/Last Update: 2023-03-10