[1]朱克亮,张天忠,石雪梅,等.基于 CycleGAN 的低照度人脸图像增强[J].计算机技术与发展,2021,31(11):95-100.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 016]
 ZHU Ke-liang,ZHANG Tian-zhong,SHI Xue-mei,et al.Low Illumination Face Image Enhancement Based on CycleGAN[J].,2021,31(11):95-100.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 016]
点击复制

基于 CycleGAN 的低照度人脸图像增强()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年11期
页码:
95-100
栏目:
图形与图像
出版日期:
2021-11-10

文章信息/Info

Title:
Low Illumination Face Image Enhancement Based on CycleGAN
文章编号:
1673-629X(2021)11-0095-06
作者:
朱克亮1 张天忠2 石雪梅1 张树涛34 陈良锋3
1. 国网安徽省电力有限公司建设分公司,安徽 合肥 230022;
2. 国网安徽省电力有限公司,安徽 合肥 230061;
3. 中国科学院合肥物质科学研究院,安徽 合肥 230026;
4. 中国科学技术大学,安徽 合肥 230031
Author(s):
ZHU Ke-liang1 ZHANG Tian-zhong2 SHI Xue-mei1 ZHANG Shu-tao34 CHEN Liang-feng3
1. State Grid Anhui Electric Power Co, Ltd. Construction Company,Hefei 230022,China;
2. State Grid Anhui Electric Power Co, Ltd. ,Hefei 230061,China;
3. Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230026,China;
4. University of Science and Technology of China,Hefei 230031,China
关键词:
循环生成对抗网络图像增强低照度梯度处罚深度学习
Keywords:
cycle generative adversarial networksimage enhancementlow illuminationgradient penaltydeep learning
分类号:
TP311. 5
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 11. 016
摘要:
人脸识别系统经常会受到光照环境的影响。 为了提高低照度条件下的人脸识别性能,提出了一种基于循环生成对抗网络的低照度人脸图像增强方法,利用循环生成对抗网络将低照度条件下的人脸图像转换成正常光照下的人脸图像。 模型包含生成器和判别器, 生成器由包含 4 个卷积层、9 个残差网络层和 2 个转置卷积层的卷积神经网络组成,判别器由包含 5 个卷积层的卷积神经网络组成。 在循环生成对抗网络训练的过程中,采用改进的损失函数,并结合梯度惩罚项来训练网络模型,提升了稳定性,加快了网络收敛速度,并且提高了生成人脸图像的质量。 在 VV 数据集上的实验结果表明, 该方法能够有效地实现低照度条件下的人脸图像增强,对比 HE、MSR 和 MSRCR 算法在 PSNR、SSIM 和 MSE 指标上有较大提高。
Abstract:
Face recognition systems are often affected by the lighting environment. To improve the performance of face recognition under low illumination conditions, a low illumination face image enhancement method based on cycle - consistent adversarial network is proposed. The network that consists of generators and discriminators is used to transfer low illumination face images to normal illumination face images. The generators consist of convolutional neural networks with four convolution layers,nine residual network layers and two transposed convolution layers,and? ? ?the discriminators consist of convolutional neural networks with five convolution layers.In the training process of the cycle-consistent adversarial network,the improved loss function and the gradient penalty are used to train the network,which improves the stability,speeds up the network convergence and improves the quality of the generated face image. Experimental results on VV dataset show that the proposed method can effectively achieve face image enhancement under low illumination conditions,and compared with HE,MSR and MSRCR,it improves PSNR,SSIM and MSE values.

相似文献/References:

[1]李春林 杨洁 杨世兴.造影图像中冠状动脉的增强方法研究[J].计算机技术与发展,2010,(03):188.
 LI Chun-lin,YANG Jie,YANG Shi-xing.Study on Approach to Enhance Coronary Artery in Angiograms[J].,2010,(11):188.
[2]钟科 潘保昌 郑胜林 梁坚.一种骨科X线片的混合图像增强算法[J].计算机技术与发展,2009,(06):124.
 ZHONG Ke,PAN Bao-chang,ZHENG Sheng-lin,et al.A Mixed Algorithm for Orthopedic X- Ray Image Enhancement[J].,2009,(11):124.
[3]贾占朝 张亚鸣.基于遗传微粒群混合算法的灰度图像增强[J].计算机技术与发展,2009,(07):69.
 JIA Zhan-chao,ZHANG Ya-ming.A Gray- Image Enhancement Based GA and PSO Hybrid Algorithm[J].,2009,(11):69.
[4]王玉震 李雷.基于SVR的图像增强方法[J].计算机技术与发展,2009,(01):60.
 WANG Yu-zhen,LI Lei.Image Enhancement Based on SVR[J].,2009,(11):60.
[5]赵艳飞 高清维 卢一相.基于多尺度Retinex算法的遥感图像增强[J].计算机技术与发展,2008,(02):70.
 ZHAO Yan-fei,GAO Qing-wei,LU Yi-xiang.Remote Sensing Image Enhancement Based on Multi- Scale Retinex Algorithm[J].,2008,(11):70.
[6]刘辉 赵文杰 吴畏.改进的多尺度Retinex红外图像增强算法[J].计算机技术与发展,2011,(04):105.
 LIU Hui,ZHAO Wen-jie,WU Wei.An Improved Multi-scale Retinex Infrared Image Enhancement Algorithm[J].,2011,(11):105.
[7]葛彬 周宁宁.基于MMTD的保留灰度值的直方图均衡化[J].计算机技术与发展,2012,(12):63.
 GE Bin,ZHOU Ning-ning.A Gray Value Retention Histogram Equalization Based on MMTD[J].,2012,(11):63.
[8]李雷 张宁 房小萍.基于二级模糊增强的图像分割[J].计算机技术与发展,2012,(12):161.
 LI Lei,ZHANG Ning,FANG Xiao-ping.Image Segmentation Method Based on Twice Fuzzy Enhancements[J].,2012,(11):161.
[9]宋欢欢,李雷.基于模糊熵的两种图像增强技术[J].计算机技术与发展,2013,(06):67.
 SONG Huan-huan,LI Lei.Two Technologies of Image Enhancement Based on Fuzzy Entropy[J].,2013,(11):67.
[10]郭依正,焦蓬蓬.Matlab GUI在低质量指纹图像增强中的应用[J].计算机技术与发展,2013,(07):230.
 GUO Yi-zheng,JIAO Peng-peng.Application of Matlab GUI in Enhancement of Low-quality Fingerprint Image[J].,2013,(11):230.

更新日期/Last Update: 2021-11-10