[1]张永福,宋海林,班 越,等.融合特征的深度学习遥感图像目标检测模型[J].计算机技术与发展,2021,31(09):48-54.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 009]
 ZHANG Yong-fu,SONG Hai-lin,BAN Yue,et al.Fusion Features Based Deep Learning Remote Sensing Image Target Detection Model[J].,2021,31(09):48-54.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 009]
点击复制

融合特征的深度学习遥感图像目标检测模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年09期
页码:
48-54
栏目:
图形与图像
出版日期:
2021-09-10

文章信息/Info

Title:
Fusion Features Based Deep Learning Remote Sensing Image Target Detection Model
文章编号:
1673-629X(2021)09-0048-07
作者:
张永福宋海林班 越汪西莉
陕西师范大学 计算机科学学院,陕西 西安 710119
Author(s):
ZHANG Yong-fuSONG Hai-linBAN YueWANG Xi-li
School of Computer Science,Shaanxi Normal University,Xi’an 710119,China
关键词:
遥感图像目标检测卷积神经网络特征融合后处理
Keywords:
remote sensing imageobject detectionconvolutional neural networkfeature fusionpost processing
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 09. 009
摘要:
为了提高目标检测模型对遥感图像中排列密集、尺度不一的目标,特别是小目标的检测性能,提出了融合特征的深度学习遥感图像目标检测模型和方法。模型采用小规模的网络结构,以应对标记样本较少的情况,并提出了融合多级特征的策略获取更为有效的特征,使模型在不增加检测时间的同时,提高遥感图像中较为密集且大小不一的目标的检测精度。 模型中提出了一种新的后处理算法——分组融合剔除检测框算法,在剔除冗余检测框的同时微调检测框位置,使检测框对目标定位更精确,进一步提升检测精度。实验结果表明,所提模型在 UCAS-AOD 和 RSOD-? Dataset 数据集上检测飞机,精度比 Faster R-CNN 的结果提高了 4.2% 和 7.3% ,漏检率和误检率均有降低。 在 UCAS-AOD 数据集上检测更小的汽车目标, 所提模型比 Faster R-CNN 检测精度提高了 7. 9% , 漏检率下降了 5.91% ,误检率下降了 2.06% 。 和 FasterR-CNN 相比,所提的融合处理和检测框后处理算法使得模型针对复杂场景中多尺度密集目标和小目标取得了更高的检测性能。
Abstract:
In order to improve the performance of the object detection model for dense,different sizes targets,especially for small targets,in remote sensing images,a fusion features based deep learning remote sensing image target detection model is proposed. The model adopts small-scale network structure aiming at the small labeled sample data sets. The strategy of multi-level feature fusion is proposed to obtain more effective features,so that the model can improve the detection accuracy for dense and different sizes targets in remote sensing images without increasing the detection time. A new post-processing algorithm,namely packet fusion reject detection bounding boxes algorithm,is proposed,which can remove the redundant detection bounding box and fine-tune the position of the detection box,thus improving the box’s locating accuracy and further improving the detection accuracy. The experimental results on the UCAS-AODand RSOD-Dataset remote sensing datasets for detecting aircraft and vehicle targets show that the proposed model achieves high detection performance for multi-scale and dense targets on small sample datasets. Compared with Faster R- CNN, it improves the detection accuracy by 4.2% and 7.3% for plane target,and by 7.9% for car targets,and reduces the missing ratio by 5. 91% and false alarm rate by 2.06% . Compared with the existing models for dense and different sizes targets detection in complex remote sensing image, the proposed model achieves higher performance due to the feature fusion processing and the detection post-processing algorithm.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(09):36.
[2]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
 LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(09):29.
[3]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(09):179.
[4]赵艳飞 高清维 卢一相.基于多尺度Retinex算法的遥感图像增强[J].计算机技术与发展,2008,(02):70.
 ZHAO Yan-fei,GAO Qing-wei,LU Yi-xiang.Remote Sensing Image Enhancement Based on Multi- Scale Retinex Algorithm[J].,2008,(09):70.
[5]陈昌生 许文波 赵健.基于ArcSDE的卫星遥感影像数据库研究[J].计算机技术与发展,2010,(07):80.
 CHEN Chang-sheng,XU Wen-bo,ZHAO Jian.Research on Remote Sensing Image Database Based on ArcSDE[J].,2010,(09):80.
[6]李晓飞 马大玮 范小麟 胡焰智.基于数学形态学的遥感图像多感兴趣区域提取[J].计算机技术与发展,2007,(12):56.
 LI Xiao-fei,MA Da-wei,FAN Xiao-lin,et al.Extraction of ROIs Based on Mathematical Morphology toward Applications on Remote Sense Image Processing[J].,2007,(09):56.
[7]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(09):60.
[8]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(09):181.
[9]董敏[],阎镇.基于CUDA的航天遥感图像实时快视系统的研究[J].计算机技术与发展,2014,24(06):32.
 DONG Min[][][],YAN Zhen[].Research on Aerospace Remote Sensing Images Real-time Quick-view System Based on CUDA[J].,2014,24(09):32.
[10]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(09):37.
[11]张永福,宋海林.基于跳跃特征金字塔的域适应目标检测模型[J].计算机技术与发展,2022,32(09):28.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 005]
 ZHANG Yong-fu,SONG Hai-lin.Skip Feature Pyramid Based Domain Adapted Model for Object Detection[J].,2022,32(09):28.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 005]
[12]薛继伟,孙宇锐.基于改进 YOLOv5 的光学遥感图像水坝检测研究[J].计算机技术与发展,2023,33(05):69.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 011]
 XUE Ji-wei,SUN Yu-rui.Research on Dam Detection of Optical Remote Sensing Image Based on Improved YOLOv5[J].,2023,33(09):69.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 011]

更新日期/Last Update: 2021-09-10