[1]黄小童,程 虹,罗 颖.基于类间蚂蚁竞争模型的显著图像分割算法[J].计算机技术与发展,2021,31(01):98-102.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 018]
 HUANG Xiao-tong,CHENG Hong,LUO Ying.Saliency Image Segmentation Algorithm Based on Ants Competition Model[J].,2021,31(01):98-102.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 018]
点击复制

基于类间蚂蚁竞争模型的显著图像分割算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年01期
页码:
98-102
栏目:
图形与图像
出版日期:
2021-01-10

文章信息/Info

Title:
Saliency Image Segmentation Algorithm Based on Ants Competition Model
文章编号:
1673-629X(2021)01-0098-05
作者:
黄小童程 虹罗 颖
湖北文理学院,湖北 襄阳 441053
Author(s):
HUANG Xiao-tongCHENG HongLUO Ying
Hubei University of Arts and Science,Xiangyang 441053,China
关键词:
显著图图像分割蚁群算法类间蚂蚁竞争简单线性迭代聚类
Keywords:
saliency mapimage segmentationant colony algorithmants competition modelsimple linear iterative clustering
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 01. 018
摘要:
由于单类蚁群算法分割易造成欠分割或者过分割,提出基于类间蚂蚁竞争模型的显著图像分割算法。 首先根据线性迭代聚类超像素分割算法(simple linear iterative clustering,SLIC)对图像进行预处理,在保留原始图像信息的前提下,将图像分割成各个区域,这样不仅可以提高分割精度得到理想的分割结果,还可以缩短运算时间。 同时为了弥补单类蚂蚁分割易造成的欠分割或者过分割,引入两类蚂蚁,每一类蚂蚁寻找各自目标(前景/背景),不同类别的蚂蚁之间进行信息互补与竞争,使得分割结果更加准确。 根据种群竞争思想,设定两类蚂蚁,每类蚂蚁设定食物目标不同,从而相互竞争,“优胜劣汰”,最终找到各自的食物,根据两类蚂蚁分泌的信息素竞争得到最终的结果。 实验结果表明,该算法运行快速,分割结果更加精确。
Abstract:
Since the single ant colony algorithm is easy to cause under-segmentation or over-segmentation,we propose a saliency image se-gmentation algori-thm based on ants competition model. Firstly,the simple linear iterative clustering (SLIC) is used to preprocess the image. Under the premise of retaining the original image information,the image is divided into various regions,which can not only improve the segmentation accuracy to obtain ideal segmentation results,but also shorten the operation time. At the same time,in order to make up for the under-segmentation or over-segmenta-tion easily caused by the segmentation of a single class of ants,two types of ants are introduced. Each type of ants looks for its own target (foreground/background),and different types of ants complement and compete with each other for information,making the segmentation result more accurate.According to the idea of population competition, two kinds of ants are set. Each group of ants sets a different food target and competes with each other,“surviving of the fittest” to find their own food and compete for the final result based on pheromones secreted by the two groups of ants. Experiment shows that the proposed algorithm runs fast and segments accurately.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(01):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(01):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(01):101.
[4]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(01):128.
[5]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(01):121.
[6]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(01):105.
[7]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(01):76.
[8]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(01):121.
[9]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(01):69.
[10]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(01):104.

更新日期/Last Update: 2020-01-10