[1]冯培坤,刘 杰,伍卫国,等.一种基于并联组合模型预测站点流量的策略[J].计算机技术与发展,2020,30(09):1-6.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 001]
 FENG Pei-kun,LIU Jie,WU Wei-guo,et al.A Strategy of Forecasting Station Traffic Based on Parallel Combination Model[J].,2020,30(09):1-6.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 001]
点击复制

一种基于并联组合模型预测站点流量的策略()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年09期
页码:
1-6
栏目:
智能、算法、系统工程
出版日期:
2020-09-10

文章信息/Info

Title:
A Strategy of Forecasting Station Traffic Based on Parallel Combination Model
文章编号:
1673-629X(2020)09-0001-06
作者:
冯培坤1刘 杰2伍卫国3柴玉香1张祥俊3
1. 西安交通大学 软件学院,陕西 西安 710000;2. 上海超级计算中心,上海 201203;3. 西安交通大学 计算机学院,陕西 西安 710000
Author(s):
FENG Pei-kun1LIU Jie2WU Wei-guo3CHAI Yu-xiang1ZHANG Xiang-jun3
1. School of Software,Xi’an Jiaotong University,Xi’an 710000,China; 2. Shanghai Supercomputing Center,Shanghai 201203,China; 3. School of Electronics and Information Engineering,Xi’an Jiaotong University,Xi’an 710000,China
关键词:
卡尔曼滤波支持向量机时序预测模型并联组合模型流量预测模型
Keywords:
Kalman filteringsupport vector machinetime series prediction modelparallel combination modeltraffic prediction model
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 09. 001
摘要:
随着流量数据的增加,网络流量呈现出复杂多变的特点,为了方便站点的运营和网络的管理,需要对网络流量进行预测。 当前,网络流量预测多采用回归预测模型、卡尔曼滤波模型、神经网络模型、支持向量机模型等方法。 文中考虑高性能计算环境下作业管理系统日志流量的特点和预测需求等因素, 通过分析卡尔曼滤波算法和支持向量机的原理与缺点,提出了一种基于时间序列,结合卡尔曼滤波和支持向量机的并联组合模型,并对其进行了测试与分析。 结果表明,在相同的环境下,基于卡尔曼滤波算法和支持向量机的并联组合模型相比于卡尔曼滤波算法和支持向量机单个模型对流量的预测与实际流量值误差更小,预测结果也是可靠有效的,更适用于预测站点流量。
Abstract:
With the increase of traffic data,network traffic is characterized by complexity and diversity. In order to facilitate the operation of the site and network management,it is necessary to predict the network traffic. At present,the network traffic prediction mostly adopts regression prediction model, Kalman filter model, neural network model and support vector machine model. Considering the characteristics and forecasting requirements of job management system log traffic in high performance computing environment, by analyzing the principles and disadvantages of Kalman filtering algorithm and support vector machine,we propose a parallel combination model based on time series combined with Kalman filter and support vector machine,which is tested and analyzed. The test results show that in the same environment,the parallel combination model based on Kalman filtering algorithm and support vector machine has less error in predicting the flow and actual flow value compared with the single model based on Kalman filtering algorithm and support vector machine,and the prediction results are also reliable and effective,which is more suitable for predicting the site flow.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(09):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(09):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(09):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(09):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(09):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(09):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(09):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(09):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(09):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(09):147.

更新日期/Last Update: 2020-09-10