[1]顾晓瑜,杨悦. 一种基于SVM的声源定位算法[J].计算机技术与发展,2017,27(09):70-74.
 GU Xiao-yu,YANG Yue. A Sound Source Localization Algorithm with Support Vector Machine[J].,2017,27(09):70-74.
点击复制

 一种基于SVM的声源定位算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
70-74
栏目:
智能、算法、系统工程
出版日期:
2017-09-10

文章信息/Info

Title:
 A Sound Source Localization Algorithm with Support Vector Machine
文章编号:
1673-629X(2017)09-0070-05
作者:
 顾晓瑜杨悦
 南京邮电大学 通信与信息工程学院
Author(s):
 GU Xiao-yuYANG Yue
关键词:
 支持向量机机器学习声源定位核函数
Keywords:
 support vector machinemachine learningsound source localizationkernel function
分类号:
TP301.6
文献标志码:
A
摘要:
 随着多媒体技术的快速发展,获取高质量的语音成为一种越来越受到广泛重视的技术手段,以麦克风阵列定位声源的方法在诸多领域得到了广泛的应用.支持向量机(Support Vector Machine,SVM)是一种基于统计学习理论和结构风险最小化原则的机器学习方法,其诸多参数的选择直接影响到SVM的性能,SVM可作为估计声源位置的分类器,且可通过选取适当的参数提高算法的抗噪声能力.为此,提出了一种基于SVM的声源定位新算法.该算法提取鉴别互相关函数的特征,通过选取合适的参数,对SVM的核函数进行优化.基于Matlab对提出的新算法进行了仿真实验验证.仿真实验结果表明,该算法较为显著地增加了混响和噪声条件下声源定位的准确性,且具有良好的鲁棒性.
Abstract:
 With the rapid development of multimedia technology,the method to obtain high-quality voice has become an increasingly widespread technical means,which has been widely used for microphone array sound source localization in many fields. Support Vector Machine ( SVM) is a machine learning method based on statistical learning theory and structural risk minimization principle,and its per-formance depends on the correct selection of related parameters. SVM can be used as a classifier to estimate the position of the sound source,and it can improve the anti-noise ability of the algorithm by selecting the appropriate parameters. Therefore a new kind of sound source localization based on SVM is proposed. By extracting the features of cross-correlation function and selecting appropriate parame-ters,the kernel function of SVM is optimized. The simulation has been carried out with the proposed algorithm using Matlab,results of which show that it has increased the accuracy of sound source localization significantly in noisy and reverberant environments,with good robustness.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(09):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(09):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(09):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(09):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(09):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(09):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(09):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(09):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(09):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(09):147.
[11]吴家皋[][],余浩[] [],张雪英[]. 基于链接回溯的地理信息更新主题爬虫研究[J].计算机技术与发展,2014,24(07):52.
 WU Jia-gao[] [],YU Hao[] [],ZHANG Xue-ying[]. Study of Topic-driven Web Crawler for Geographic Information Updating Based on Link Backtracking[J].,2014,24(09):52.
[12]李雷,魏蕴婕. 结合模糊聚类与支持向量机的图像分割[J].计算机技术与发展,2014,24(07):88.
 LI Lei,WEI Yun-jie. Image Segmentation Combined FCM and SVM[J].,2014,24(09):88.
[13]李燕玲,苏一丹. 改进的二叉树支持向量机在多分类中的应用[J].计算机技术与发展,2014,24(07):181.
 LI Yan-ling,SU Yi-dan. Application of Improved Binary Tree Support Vector Machine in Multi-classification[J].,2014,24(09):181.
[14]李春生[],苏晓伟[],魏军[],等. 基于支持向量机的抽油机井功图识别研究[J].计算机技术与发展,2014,24(08):215.
 LI Chun-sheng[],SU Xiao-wei[],WEI Jun[],et al. Research on Diagrams Identification of Pumping Unit Based on Support Vector Machine[J].,2014,24(09):215.
[15]李妍坊,许歆艺,刘功申. 面向情感倾向性识别的特征分析研究[J].计算机技术与发展,2014,24(09):33.
 LI Yan-fang,XU Xin-yi,LIU Gong-shen. Research on Feature Analysis Oriented Text Sentiment Identification[J].,2014,24(09):33.
[16]鄂旭[] [],毕佳娜[],侯建[],等. 一种车牌智能定位方法研究[J].计算机技术与发展,2014,24(10):124.
 E Xu[] [],BI Jia-na[],HOU Jian[],et al. Research on a License Plate Intelligent Localization Method[J].,2014,24(09):124.
[17]李利杰[],张君华[],熊伟清[],等. 一种改进的支持向量机模型优化算法[J].计算机技术与发展,2014,24(12):114.
 LI Li-jie[],ZHANG Jun-hua[],XIONG Wei-qing[],et al. An Improved Algorithm for Model Optimization of Support Vector Machine[J].,2014,24(09):114.
[18]陈桂林,王生光,徐静妹,等. 基于GA和组合核的SVM入侵检测算法[J].计算机技术与发展,2015,25(02):148.
 CHEN Gui-lin,WANG Sheng-guang,XU Jing-mei,et al. Intrusion Detection Algorithm of SVM Based on GA and Composed Kernel Function[J].,2015,25(09):148.
[19]李琼,陈利. 一种改进的支持向量机文本分类方法[J].计算机技术与发展,2015,25(05):78.
 LI Qiong CHEN Li. An Improved Text Classification Method for Support Vector Machine[J].,2015,25(09):78.
[20]贾慧敏. 基于ML改进技术的IDS的设计与实现[J].计算机技术与发展,2015,25(06):114.
 JIA Hui-min. Design and Implementation of IDS Based on ML’ s Improved Technology[J].,2015,25(09):114.

更新日期/Last Update: 2017-10-20