[1]赵曌[],丁广太[][],樊明磊[],等. 融合LBP纹理和局部灰度特征的材料图像分割[J].计算机技术与发展,2016,26(10):11-16.
 ZHAO Zhao[],DING Guang-tai[][],FAN Ming-lei[],et al. Material Image Segmentation Combined LBP Texture and Local Gray Level Feature[J].,2016,26(10):11-16.
点击复制

 融合LBP纹理和局部灰度特征的材料图像分割()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
11-16
栏目:
智能、算法、系统工程
出版日期:
2016-10-10

文章信息/Info

Title:
 Material Image Segmentation Combined LBP Texture and Local Gray Level Feature
文章编号:
1673-629X(2016)10-0011-06
作者:
 赵曌[1]丁广太[1][2] 樊明磊[1] 张惠然[1][2] 王路[1] 陈琳[3]
 1.上海大学 计算机工程与科学学院;2.上海材料基因组工程研究院;3.上海金融学院 信息管理中心
Author(s):
 ZHAO Zhao[1] DING Guang-tai[1][2] FAN Ming-lei[1] ZHANG Hui-ran[1][2] WANG Lu[1]CHEN Lin[3]
关键词:
 图像分割T-LBP 谱聚类算法灰度特征线检测
Keywords:
 image segmentationT-LBPspectral clustering algorithmgray levelline detection
分类号:
TP301
文献标志码:
A
摘要:
 为了提高材料图像的分割精度,提出了融合局部灰度特征和LBP纹理的谱聚类分割算法。针对LBP算子无法区分邻域灰度差值幅度,提出几种改进的T-LBP算子,以表示图像纹理变化程度。构造邻域向量差用以描述局部特征;利用灰度直方图选取样本点;融合T-LBP特征与像素灰度特征及局部特征构造相似性矩阵;利用谱聚类算法进行图像分割;采用线检测方法抑制具有方向性的纹理噪声。对陶瓷材料图像和合成图像的实验结果表明,算法分割精度高、抗噪性强,具有较高的正确分类率。提出的融合LBP特征和灰度特征的谱聚类分割算法弥补了现有材料图像分割算法的不足,提高了材料图像的分割精度,适用于区域繁多、纹理复杂的材料图像;与其他算法实验结果的对比验证了该算法的有效性。
Abstract:
 To improve precision of material image segmentation,based on spectral clustering method,a set of new algorithms combined local gray level features with Local Binary Patterns ( LBP) are proposed. Considering that the LBP operator cannot efficiently distinguish the difference of gray magnitude of pixels in the neighborhoods,several threshold-LBP ( T-LBP) operators are proposed to show the change of image pixels. The difference of neighborhood vector is constructed to describe the local features,selecting sample points by gray level histogram,establishing the similarity matrix by combination of T-LBP features,gray features of pixel and local features,conducting the image segmentation by spectral clustering algorithm,and constraining the texture noise with direction by liner detection. The experi-ment for ceramic material image and synthetic image shows that the algorithm has high segmentation precision,strong noise resistance, and well correct classification rate. The proposed algorithm breaks through the drawbacks and improves the accuracy of material image segmentation,which is appropriate for various areas and complex texture of material images. The comparison among the proposed algo-rithm and other algorithm demonstrates the effectiveness of the former.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(10):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(10):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(10):101.
[4]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(10):128.
[5]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(10):121.
[6]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(10):105.
[7]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(10):76.
[8]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(10):121.
[9]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(10):69.
[10]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(10):104.
[11]李雷,魏蕴婕. 结合模糊聚类与支持向量机的图像分割[J].计算机技术与发展,2014,24(07):88.
 LI Lei,WEI Yun-jie. Image Segmentation Combined FCM and SVM[J].,2014,24(10):88.
[12]宋欢欢[],李雷[]. 基于模糊熵的自适应多阈值图像分割方法[J].计算机技术与发展,2014,24(12):32.
 SONG Huan-huan[],LI Lei[]. An Adaptive Multi-threshold Image Segmentation Method Based on Fuzzy Entropy[J].,2014,24(10):32.
[13]田若良,刘柏森. 基于频域能量分割的图像模糊度评价方法[J].计算机技术与发展,2015,25(06):101.
 TIAN Ruo-liang,LIU Bai-sen. An Evaluation Method of Image Blur Based on Frequency Domain Energy Partition[J].,2015,25(10):101.
[14]汪昡紫,孙宪坤,高飞. 轨道表面图像处理算法研究[J].计算机技术与发展,2015,25(09):182.
 WANG Xuan-zi,SUN Xian-kun,GAO Fei. Research on Algorithm of Track Surface Image Processing[J].,2015,25(10):182.
[15]叶超. 基于归一化割的血吸虫卵图像分割[J].计算机技术与发展,2015,25(11):27.
 YE Chao. Segmentation of Schistosome Eggs Image Based on Normalized Cut[J].,2015,25(10):27.
[16]张林[],吴振强[]. 基于OpenCV的X光手指骨图像分割方法[J].计算机技术与发展,2015,25(11):200.
 ZHANG Lin[],WU Zhen-qiang[]. X-ray Finger Bone Image Segmentation Method Based on OpenCV[J].,2015,25(10):200.
[17]郭娟,何坤,周激流. 基于卡通提取的自然图像分割[J].计算机技术与发展,2016,26(02):12.
 GUO Juan,HE Kun,ZHOU Ji-liu. Natural Image Segmentation Based on Cartoon Component Extracting[J].,2016,26(10):12.
[18]丁毅,李玉惠,李勃. 基于图像不同亮度区域特征的Gamma矫正方法[J].计算机技术与发展,2016,26(06):37.
 DING Yi,LI Yu-hui,LI Bo. Gamma Correction Based on Different Brightness Regional Features for Images[J].,2016,26(10):37.
[19]洪浩[],霍春宝[],王京[],等. 基于改进Otsu算法在前方目标车辆识别中的研究[J].计算机技术与发展,2016,26(06):78.
 HONG Hao[],HUO Chun-bao[],WANG Jing[],et al. Research on Front Target Vehicle Identification Based on Improved Otsu Algorithm[J].,2016,26(10):78.
[20]王钛[],许斌[],李林国[],等. 基于离散灰狼算法的多级阈值图像分割[J].计算机技术与发展,2016,26(07):30.
 WANG Tai[],XU Bin[],LI Lin-guo[],et al. A Multi-threshold Image Segmentation Algorithm Based on Discrete Grey Wolf Optimization[J].,2016,26(10):30.

更新日期/Last Update: 2016-11-25