[1]李扬,陆璐,崔红霞. 谱聚类图像分割中相似度矩阵构造研究[J].计算机技术与发展,2016,26(07):55-58.
 LI Yang,LU Lu,CUI Hong-xia. Research on Similarity Matrix Structure in Spectral Clustering Image Segmentation[J].,2016,26(07):55-58.
点击复制

 谱聚类图像分割中相似度矩阵构造研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年07期
页码:
55-58
栏目:
智能、算法、系统工程
出版日期:
2016-07-10

文章信息/Info

Title:
 Research on Similarity Matrix Structure in Spectral Clustering Image Segmentation
文章编号:
1673-629X(2016)07-0055-04
作者:
 李扬陆璐崔红霞
 渤海大学 信息科学与技术学院
Author(s):
 LI YangLU LuCUI Hong-xia
关键词:
 图像分割谱聚类相似度矩阵颜色空间距离公式
Keywords:
 image segmentationspectral clusteringsimilarity matrixcolor spacedistance formula
分类号:
TP391
文献标志码:
A
摘要:
 近年来谱聚类算法广泛应用于图像分割领域,而相似度矩阵的构造是谱聚类算法的关键。通常传统的谱聚类算法分割彩色图像时,仅采用一种颜色空间和距离计算公式构造相似度矩阵,而忽略了不同的颜色空间和距离计算公式构造的相似度矩阵对分割结果的影响,导致谱聚类算法有诸多的局限性。针对这个问题,文中分别采用RGB和HSV颜色空间,以及分别在两种颜色空间下使用欧氏距离、余弦距离和卡方距离公式,建立不同的相似度矩阵。分析比较不同构造方法的分割效果,得出了最优分割效果的相似度矩阵构造方法,提高了应用谱聚类算法分割彩色图像的有效性。通过计算性能评价指标查准率和查全率以及分割结果的准确率,验证了实验的可靠性和准确性。
Abstract:
 In recent years,spectral clustering algorithm is widely used in the field of image segmentation,and the structure of the similarity matrix is the key of it. When the color images are segmented by traditional spectral clustering algorithm,the only one of color space and distance calculation formula is usually used to construct similarity matrix. The influence of the segmentation results established on the dif-ferent color space and distance calculation formula is neglected,which leads to many limitations of spectral clustering algorithm. To solve this problem,using the formula of Euclidean distance,cosine distance and chi square distance,the different similarity matrices are estab-lished on RGB and HSV color space. The best segmentation construction method of the similarity matrix is obtained by analysis and com-parison of the effect of different construction methods. The effectiveness of spectral clustering algorithm for segmenting color images is improved. By calculating the accuracy of image segmentation results and the performance evaluation index of precision and recall,the reli-ability and accuracy of the experiment are verified.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(07):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(07):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(07):101.
[4]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(07):128.
[5]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(07):121.
[6]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(07):105.
[7]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(07):76.
[8]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(07):121.
[9]吴亚 汪继文.水平集图像分割中重新初始化规避的探索[J].计算机技术与发展,2009,(09):69.
 WU Ya,WANG Ji-wen.Avoidance of Re- Initialization in Level Set Image Segmentation[J].,2009,(07):69.
[10]李鑫环 陈立潮 赵红艳 赵勇.基于多小波分析与SOFM的MR图像分割算法研究[J].计算机技术与发展,2009,(09):104.
 LI Xin-huan,CHEN Li-chao,ZHAO Hong-yan,et al.Research on MR Image Segmentation Based on Multi- wavelet Analysis and SOFM[J].,2009,(07):104.
[11]李雷,魏蕴婕. 结合模糊聚类与支持向量机的图像分割[J].计算机技术与发展,2014,24(07):88.
 LI Lei,WEI Yun-jie. Image Segmentation Combined FCM and SVM[J].,2014,24(07):88.
[12]宋欢欢[],李雷[]. 基于模糊熵的自适应多阈值图像分割方法[J].计算机技术与发展,2014,24(12):32.
 SONG Huan-huan[],LI Lei[]. An Adaptive Multi-threshold Image Segmentation Method Based on Fuzzy Entropy[J].,2014,24(07):32.
[13]田若良,刘柏森. 基于频域能量分割的图像模糊度评价方法[J].计算机技术与发展,2015,25(06):101.
 TIAN Ruo-liang,LIU Bai-sen. An Evaluation Method of Image Blur Based on Frequency Domain Energy Partition[J].,2015,25(07):101.
[14]汪昡紫,孙宪坤,高飞. 轨道表面图像处理算法研究[J].计算机技术与发展,2015,25(09):182.
 WANG Xuan-zi,SUN Xian-kun,GAO Fei. Research on Algorithm of Track Surface Image Processing[J].,2015,25(07):182.
[15]叶超. 基于归一化割的血吸虫卵图像分割[J].计算机技术与发展,2015,25(11):27.
 YE Chao. Segmentation of Schistosome Eggs Image Based on Normalized Cut[J].,2015,25(07):27.
[16]张林[],吴振强[]. 基于OpenCV的X光手指骨图像分割方法[J].计算机技术与发展,2015,25(11):200.
 ZHANG Lin[],WU Zhen-qiang[]. X-ray Finger Bone Image Segmentation Method Based on OpenCV[J].,2015,25(07):200.
[17]郭娟,何坤,周激流. 基于卡通提取的自然图像分割[J].计算机技术与发展,2016,26(02):12.
 GUO Juan,HE Kun,ZHOU Ji-liu. Natural Image Segmentation Based on Cartoon Component Extracting[J].,2016,26(07):12.
[18]丁毅,李玉惠,李勃. 基于图像不同亮度区域特征的Gamma矫正方法[J].计算机技术与发展,2016,26(06):37.
 DING Yi,LI Yu-hui,LI Bo. Gamma Correction Based on Different Brightness Regional Features for Images[J].,2016,26(07):37.
[19]洪浩[],霍春宝[],王京[],等. 基于改进Otsu算法在前方目标车辆识别中的研究[J].计算机技术与发展,2016,26(06):78.
 HONG Hao[],HUO Chun-bao[],WANG Jing[],et al. Research on Front Target Vehicle Identification Based on Improved Otsu Algorithm[J].,2016,26(07):78.
[20]王钛[],许斌[],李林国[],等. 基于离散灰狼算法的多级阈值图像分割[J].计算机技术与发展,2016,26(07):30.
 WANG Tai[],XU Bin[],LI Lin-guo[],et al. A Multi-threshold Image Segmentation Algorithm Based on Discrete Grey Wolf Optimization[J].,2016,26(07):30.

更新日期/Last Update: 2016-09-28