相似文献/References:
[1]黄艳 赵越.3D靶标的摄像机三步标定算法与实现[J].计算机技术与发展,2010,(01):135.
HUANG Yan,ZHAO Yue.Algorithm and Realization of Three-step Camera Calibration Based on 3D-Target[J].,2010,(01):135.
[2]付海洋 牛连强 刘守琳.一种基于平面模板的单应矩阵求解方法[J].计算机技术与发展,2010,(04):69.
FU Hai-yang,NIU Lian-qiang,LIU Shou-lin.A Solving Homography Matrix Method Based on Planar Pattern[J].,2010,(01):69.
[3]张铖伟 王彪 徐贵力.摄像机标定方法研究[J].计算机技术与发展,2010,(11):174.
ZHANG Cheng-wei,WANG Biao,XU Gui-li.A Study on Classification of Camera Calibration Methods[J].,2010,(01):174.
[4]毛雁明 杨慧玲.一种新的立体匹配算法[J].计算机技术与发展,2011,(03):105.
MAO Yan-ming,YANG Hui-ling.A New Stereo Matching Algorithm[J].,2011,(01):105.
[5]杨晟,李学军,王珏,等.连续尺度复合分析核线重排列影像准稠密匹配[J].计算机技术与发展,2013,(04):111.
YANG Sheng,LI Xue-jun,WANG Jue,et al.Continuous Scale Multi-change Detecting Quasi-dense Matching for Epipolar Resample Images[J].,2013,(01):111.
[6]卢振宇,郭星,魏赛,等.基于计算机视觉的虚拟安全空间预警技术[J].计算机技术与发展,2014,24(02):237.
LU Zhen-yu,GUO Xing,WEI Sai,et al.A Surveillance Technology for Virtual Security Space Based on Computer Vision[J].,2014,24(01):237.
[7]李孟,周波,孟正大,等. 三目立体相机的标定研究[J].计算机技术与发展,2015,25(02):69.
LI Meng,ZHOU Bo,MENG Zheng-da,et al. Study on Trinocular Stereo Camera Calibration[J].,2015,25(01):69.
[8]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(01):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[9]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(01):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[10]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(01):19.
[11]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(01):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[12]许必宵,宫 婧,孙知信.基于卷积神经网络的目标检测模型综述[J].计算机技术与发展,2019,29(12):87.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
XU Bi-xiao,GONG Jing,SUN Zhi-xin.A Survey of Object Detection Models Based on Convolutional Neural Networks[J].,2019,29(01):87.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 016]
[13]陈晓艺,陆一鸣,沈加炜,等.基于深度学习的灾后建筑物损坏程度检测综述[J].计算机技术与发展,2023,33(09):1.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 001]
CHEN Xiao-yi,LU Yi-ming,SHEN Jia-wei,et al.Review of Post-disaster Building Damage Detection Based on Deep Learning[J].,2023,33(01):1.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 001]
[14]卜子渝,杨 哲,刘纯平.基于 EfficientNet 的无锚框目标检测模型[J].计算机技术与发展,2024,34(01):37.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 006]
BU Zi-yu,YANG Zhe,LIU Chun-ping.An Anchor-free Object Detection Model Based on EfficientNet[J].,2024,34(01):37.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 006]