[1]章佳琪,肖 建 *.DID-YOLO:一种适用于嵌入式设备的移动机器人目标检测算法[J].计算机技术与发展,2023,33(10):8-14.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 002]
 ZHANG Jia-qi,XIAO Jian *.DID-YOLO:A Mobile Robot Target Detection Algorithm for Embedded Devices[J].,2023,33(10):8-14.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 002]
点击复制

DID-YOLO:一种适用于嵌入式设备的移动机器人目标检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年10期
页码:
8-14
栏目:
嵌入式计算
出版日期:
2023-10-10

文章信息/Info

Title:
DID-YOLO:A Mobile Robot Target Detection Algorithm for Embedded Devices
文章编号:
1673-629X(2023)10-0008-07
作者:
章佳琪1 肖 建2 *
1. 南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210046;
2. 南京邮电大学 集成电路科学与工程学院,江苏 南京 210046
Author(s):
ZHANG Jia-qi1 XIAO Jian2 *
1. School of Electronic and Optical Engineering & School of Flexible Electronics ( Future Technology) ,Nanjing University of Posts and Telecommunications,Nanjing 210046,China;
2. School of Integrated Circuit Science and Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210046,China
关键词:
移动机器人目标检测嵌入式设备轻量化知识蒸馏
Keywords:
mobile robotobject detectionembedded devicelightweightknowledge distillation
分类号:
TP249
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 10. 002
摘要:
近些年来,目标检测算法在移动机器人环境感知领域表现出了突出的性能。 但是目标检测算法存在模型庞大和计算复杂的问题,制约了目标检测算法在移动嵌入式设备上的部署和发展。 YOLO 是一种单阶段的目标检测算法,具有较高的准确度和较快的运行速度。 该文提出了一种基于 YOLOv5s 改进后适用于嵌入式设备的移动机器人目
标检测算法DID-YOLO。 首先,使用深度可分离卷积和倒置残差模块对 YOLOv5s 的 backbone 网络进行重构,降低模型复杂度和计算量,达到轻量化的目的;其次,利用特征层和输出层结合的知识蒸馏训练提高重构后目标检测网络的精度。 在目标检测通用数据集 PASCAL VOC 上实验表明:DID-YOLO 模型尺寸为 3. 63 MB,相较原网络模型尺寸减小了 48. 65% ;经过特征层和输出层蒸馏后,DID-YOLO 的 mAP@ 0. 5 提升至 73. 83% ;DID-YOLO 在 Jetson AGX Xavier 上实现了每秒 31. 2 帧的实时图像处理速度。 提出的 DID-YOLO 性能显著,满足了移动机器人嵌入式平台的实时高精度检测需求。
Abstract:
In recent years, object detection algorithm has shown outstanding performance in the field of mobile robot environmentperception. However,the problem of huge?
model and complex calculation of target detection algorithm restricts the deployment and development of such algorithm on mobile embedded devices. YOLO is?
a single-stage target detection algorithm with high accuracy and fastrunning speed. We propose an improved DID-YOLO mobile robot target detection algorithm?
based on YOLOv5s,which is suitable forembedded devices. Firstly,deep separable convolution and inverted residual modules are used to reconstruct the backbone network ofYOLOv5s to reduce model complexity and computational load for lightweight. Secondly,knowledge distillation training which combinesthe feature layer and the output layer is used to improve the accuracy of the reconstructed target detection network. Experiments onPASCAL VOC show that the size of DID-YOLO model is 3. 63 MB,which is 48. 65% smaller than that of the original network model.After distillation of the feature layer and the output layer,mAP@ 0. 5 of DID-YOLO increased to 73. 83% . DID-YOLO achieved a real-time image processing speed of 31. 2 frames per second on Jetson AGX Xavier. The DID-YOLO proposed has remarkable performanceand can meet the requirements of real-time and high-precision detection of embedded mobile robot platforms.

相似文献/References:

[1]刘晓明 李毓蕙 高燕 郑华强.基于目标区域清晰显示的H.264编码策略[J].计算机技术与发展,2010,(06):29.
 LIU Xiao-ming,LI Yu-hui,GAO Yan,et al.A Coding Strategy of H.264 Based on High-definition Display of Target Region[J].,2010,(10):29.
[2]王娜 马昕.基于细化算法的移动机器人拓扑地图创建[J].计算机技术与发展,2009,(10):11.
 WANG Na,MA Xin.Mobile Robot Topological Map Building Based on Thinning Algorithm[J].,2009,(10):11.
[3]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(10):179.
[4]范莉丽 王奇志.改进的生物激励神经网络的机器人路径规划[J].计算机技术与发展,2006,(04):19.
 FAN Li-li,WANG Qi-zhi.Robot Path Planning of Modified Biologically Inspired Neural Networks[J].,2006,(10):19.
[5]王肖青 王奇志.传统人工势场的改进[J].计算机技术与发展,2006,(04):96.
 WANG Xiao-qing,WANG Qi-zhi.An Evolutionary Method of Traditional Artificial Potential Field[J].,2006,(10):96.
[6]吕凌 曾碧.基于评估和分工合作并行蚁群机器人路径规划[J].计算机技术与发展,2011,(09):10.
 Lü Ling,ZENG Bi.Path Planning for Robot Introduction Parallel Ant Colony Algorithm Based on Division of Labor and Assessment[J].,2011,(10):10.
[7]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(10):60.
[8]张璐 张国良 张维平 敬斌.基于粒子群三次样条优化的局部路径规划方法[J].计算机技术与发展,2012,(11):145.
 ZHANG Lu,ZHANG Guo-liang,ZHANG Wei-ping,et al.Local Path Planning Algorithm Based on Particle Swarm Optimization of Cubic Splines[J].,2012,(10):145.
[9]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(10):181.
[10]徐丁,朱擎飞,叶晓东.遗传算法在移动机器人路径规划中的应用[J].计算机技术与发展,2013,(11):112.
 XU Ding,ZHU Qing-fei,YE Xiao-dong.Application of Genetic Algorithm in Mobile Robot Path Planning[J].,2013,(10):112.
[11]何 松,孙 静,郭乐江,等.基于激光 SLAM 和深度学习的语义地图构建[J].计算机技术与发展,2020,30(09):88.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 016]
 HE Song,SUN Jing,GUO Le-jiang,et al.Semantic Mapping Based on Laser SLAM and Deep Learning[J].,2020,30(10):88.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 016]

更新日期/Last Update: 2023-10-10