[1]徐胜超,杨 波.基于人工鱼群算法的容器云资源低能耗部署方法[J].计算机技术与发展,2023,33(06):22-27.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 004]
 XU Sheng-chao,YANG Bo.Low Energy Consumption Deployment Method for Container Cloud Resources Based on Artificial Fish Swarm Algorithm[J].,2023,33(06):22-27.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 004]
点击复制

基于人工鱼群算法的容器云资源低能耗部署方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年06期
页码:
22-27
栏目:
大数据与云计算
出版日期:
2023-06-10

文章信息/Info

Title:
Low Energy Consumption Deployment Method for Container Cloud Resources Based on Artificial Fish Swarm Algorithm
文章编号:
1673-629X(2023)06-0022-067
作者:
徐胜超杨 波
广州华商学院 数据科学学院,广东 广州 511300
Author(s):
XU Sheng-chaoYANG Bo
School of Date Science,Guangzhou Huashang College,Guangzhou 511300,China
关键词:
人工鱼群算法容器云资源低能耗部署方法
Keywords:
artificial fish swarm algorithmcontainercloud resourcelow energy consumptiondeployment method
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 06. 004
摘要:
目前容器云资源部署过程中能耗较高,直接增加了云服务提供商的经济成本。 提出基于人工鱼群算法的容器云资源低能耗部署方法。 首先,对容器平台的能量消耗模型展开详细分析,确定容器相关运行参数;通过制定的模型约束条件建立容器云资源的低能耗部署模型;然后,使用人工鱼群算法对模型求解,搜索出部署模型的全局最佳值,制定最佳部署方案;最后,依据制定的资源低能耗部署方案,实现容器云资源的低能耗部署。 测试容器云资源低能耗部署时的平均最大等待时间、最大响应时间、最大平均任务队列长度和平均能量损耗。 测试结果表明,容器云资源低能耗部署时的平均最大等待时间在检测次数为 50 次时,仍未超过 70 ms; 最大响应时间在检测次数为 50 次时未超过 45 ms; 随着部署时间增加,最大平均任务队列长度为 85 mm,10 次实验中平均能量损耗均在 25 672 kJ 以内,由此可见该方法在容器云资源低能耗部署中具有较好的性能。
Abstract:
High energy consumption during the deployment of container cloud resources has increased the economic cost of cloud serviceproviders. A low energy consumption deployment method of container cloud resources based on artificial fish swarm algorithm isproposed. Firstly,the energy consumption model of the container platform is analyzed in detail,and the relevant operation parameters ofthe container are determined. The low energy consumption deployment model of container cloud resources is established through the established model constraints. Then,the artificial fish swarm algorithm is used to solve the model,search the global optimal value of the deployment model,and formulate the optimal deployment scheme. Finally, the low energy consumption deployment of container cloudresources is realized according to the developed resource low energy consumption deployment scheme. The average maximum waitingtime, maximum response time,maximum average task queue length,and average energy consumption in the low energy consumption deployment of the container cloud resources are tested. It
is showed that the average maximum waiting time for low energy consumption deployment of container cloud resources does not exceed 70 ms when the number of inspections is 50. The maximum response time doesnot exceed 45 ms when the number of tests is 50. As the deployment time increases,the maximum average task queue length is 85 mm,and the average energy loss in 10 experiments is within 25 672 kJ. Therefore,the proposed method has excellent performance in the lowenergy consumption deployment of container cloud resources.

相似文献/References:

[1]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(06):84.
[2]古明家 宣士斌 廉侃超 李永胜.基于蚁群和人工鱼群算法融合的QoS路由算法[J].计算机技术与发展,2009,(07):145.
 GU Ming-jia,XUAN Shi-bin,LIAN Kan-chao,et al.QoS Routing Algorithm Based on Combination of Modified Ant Colony Algorithm and Artificial Fish Swarm Algorithm[J].,2009,(06):145.
[3]史学军,方金鑫,于舒娟.基于全局人工鱼群算法的盲均衡[J].计算机技术与发展,2013,(05):75.
 SHI Xue-jun,FANG Jin-xin,YU Shu-juan.Blind Equalization Based on Global Artificial Fish Swarm Algorithm[J].,2013,(06):75.
[4]刘晓丽,熊良鹏. 改进的人工鱼群算法在机器人控制中的应用[J].计算机技术与发展,2015,25(05):200.
 LIU Xiao-li,XIONG Liang-peng. Application of Robot Control Using Improved Artificial Fish Swarm Algorithm[J].,2015,25(06):200.
[5]彭培真,俞毅,王兆嘉,等. 基于单纯形的改进全局人工鱼群优化算法[J].计算机技术与发展,2015,25(08):75.
 PENG Pei-zhen,YU Yi,WANG Zhao-jia,et al. Improved Global Artificial Fish Swarm Algorithm Based on Simplex Method[J].,2015,25(06):75.
[6]汪恺,张功萱,周秀敏. 基于容器虚拟化技术研究[J].计算机技术与发展,2015,25(08):138.
 WANG Kai,ZHANG Gong-xuan,ZHOU Xiu-min. Research on Virtualization Technology Based on Container[J].,2015,25(06):138.
[7]汪晨,张玲华.基于人工鱼群算法的改进质心定位算法[J].计算机技术与发展,2018,28(05):103.[doi:10.3969/ j. issn.1673-629X.2018.05.024]
 WANG Chen,ZHANG Ling-hua.An Improved Centroid Localization Algorithm Based on Optimized Artificial Fish Swarm Algorithm[J].,2018,28(06):103.[doi:10.3969/ j. issn.1673-629X.2018.05.024]
[8]秦军[],翟钊[]. 基于Hadoop MapReduce的组合服务性能优化研究[J].计算机技术与发展,2016,26(05):61.
 QIN Jun[],ZHAI Zhao[]. Research on Composite Service Performance Optimization Based on Hadoop MapReduce[J].,2016,26(06):61.
[9]鲁涛,陈杰,史军.Docker 安全性研究[J].计算机技术与发展,2018,28(06):115.[doi:10.3969/ j. issn.1673-629X.2018.06.026]
 LU Tao,CHEN Jie,SHI Jun.Research of Docker Security[J].,2018,28(06):115.[doi:10.3969/ j. issn.1673-629X.2018.06.026]
[10]赵乐乐,黄刚,马越. 基于Docker的Hadoop平台架构研究[J].计算机技术与发展,2016,26(09):99.
 ZHAO Le-le,HUANG Gang,MA Yue. Research on Hadoop Platform Based on Docker[J].,2016,26(06):99.

更新日期/Last Update: 2023-06-10